Properties

Label 4.4.19821.1-27.2-a2
Base field 4.4.19821.1
Conductor norm \( 27 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.19821.1

Generator \(a\), with minimal polynomial \( x^{4} - x^{3} - 8 x^{2} + 6 x + 3 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([3, 6, -8, -1, 1]))
 
gp: K = nfinit(Polrev([3, 6, -8, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![3, 6, -8, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a+1\right){x}{y}+\left(a^{2}-3\right){y}={x}^{3}+\left(\frac{2}{3}a^{3}-\frac{1}{3}a^{2}-6a+1\right){x}^{2}+\left(-\frac{5}{3}a^{3}+\frac{1}{3}a^{2}+10a-2\right){x}-\frac{7}{3}a^{3}+\frac{8}{3}a^{2}+17a-22\)
sage: E = EllipticCurve([K([1,1,0,0]),K([1,-6,-1/3,2/3]),K([-3,0,1,0]),K([-2,10,1/3,-5/3]),K([-22,17,8/3,-7/3])])
 
gp: E = ellinit([Polrev([1,1,0,0]),Polrev([1,-6,-1/3,2/3]),Polrev([-3,0,1,0]),Polrev([-2,10,1/3,-5/3]),Polrev([-22,17,8/3,-7/3])], K);
 
magma: E := EllipticCurve([K![1,1,0,0],K![1,-6,-1/3,2/3],K![-3,0,1,0],K![-2,10,1/3,-5/3],K![-22,17,8/3,-7/3]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((1/3a^3-2/3a^2-2a+1)\) = \((-1/3a^3-1/3a^2+3a+2)^{3}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 27 \) = \(3^{3}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-3a^3+2a^2+27a-3)\) = \((-1/3a^3-1/3a^2+3a+2)^{9}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -19683 \) = \(-3^{9}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{2272}{3} a^{3} + \frac{1171}{3} a^{2} - 5297 a - 3398 \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(\frac{2}{3} a^{3} - \frac{4}{3} a^{2} - 5 a + 8 : 3 a^{3} - 4 a^{2} - 22 a + 24 : 1\right)$
Height \(0.068663543097937929375980847662515638216\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.068663543097937929375980847662515638216 \)
Period: \( 802.80365499163727224385211594129448132 \)
Tamagawa product: \( 3 \)
Torsion order: \(1\)
Leading coefficient: \( 4.69844357865651 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-1/3a^3-1/3a^2+3a+2)\) \(3\) \(3\) \(IV^{*}\) Additive \(-1\) \(3\) \(9\) \(0\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3.
Its isogeny class 27.2-a consists of curves linked by isogenies of degree 3.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.