Properties

Label 4.4.19821.1-17.1-a2
Base field 4.4.19821.1
Conductor norm \( 17 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.19821.1

Generator \(a\), with minimal polynomial \( x^{4} - x^{3} - 8 x^{2} + 6 x + 3 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([3, 6, -8, -1, 1]))
 
gp: K = nfinit(Polrev([3, 6, -8, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![3, 6, -8, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{2}-a-4\right){x}{y}={x}^{3}+\left(\frac{2}{3}a^{3}-\frac{1}{3}a^{2}-4a+1\right){x}^{2}+\left(\frac{1}{3}a^{3}-\frac{5}{3}a^{2}-2a+9\right){x}+\frac{19}{3}a^{3}-\frac{2}{3}a^{2}-48a-11\)
sage: E = EllipticCurve([K([-4,-1,1,0]),K([1,-4,-1/3,2/3]),K([0,0,0,0]),K([9,-2,-5/3,1/3]),K([-11,-48,-2/3,19/3])])
 
gp: E = ellinit([Polrev([-4,-1,1,0]),Polrev([1,-4,-1/3,2/3]),Polrev([0,0,0,0]),Polrev([9,-2,-5/3,1/3]),Polrev([-11,-48,-2/3,19/3])], K);
 
magma: E := EllipticCurve([K![-4,-1,1,0],K![1,-4,-1/3,2/3],K![0,0,0,0],K![9,-2,-5/3,1/3],K![-11,-48,-2/3,19/3]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a+2)\) = \((a+2)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 17 \) = \(17\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((2/3a^3+2/3a^2-7a)\) = \((a+2)^{2}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -289 \) = \(-17^{2}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{9878307305244158}{867} a^{3} + \frac{18933234918159542}{867} a^{2} - \frac{7934960729500279}{289} a - \frac{3386870152613548}{289} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-\frac{5}{12} a^{3} + \frac{1}{12} a^{2} + \frac{7}{2} a - \frac{1}{4} : -\frac{11}{12} a^{3} + \frac{11}{24} a^{2} + \frac{13}{2} a - \frac{3}{8} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 736.90282674080634455797783789323415601 \)
Tamagawa product: \( 2 \)
Torsion order: \(2\)
Leading coefficient: \( 2.61708269667033 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a+2)\) \(17\) \(2\) \(I_{2}\) Non-split multiplicative \(1\) \(1\) \(2\) \(2\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2.
Its isogeny class 17.1-a consists of curves linked by isogenies of degree 2.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.