Properties

Label 4.4.1957.1-57.1-a3
Base field 4.4.1957.1
Conductor norm \( 57 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.1957.1

Generator \(a\), with minimal polynomial \( x^{4} - 4 x^{2} - x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -1, -4, 0, 1]))
 
gp: K = nfinit(Polrev([1, -1, -4, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -1, -4, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(-a^{3}+a^{2}+3a-1\right){x}{y}+\left(-a^{3}+a^{2}+3a-1\right){y}={x}^{3}+\left(a^{2}-2a-1\right){x}^{2}+\left(52a^{3}+99a^{2}-225a-448\right){x}+1490a^{3}+58a^{2}-5543a-1945\)
sage: E = EllipticCurve([K([-1,3,1,-1]),K([-1,-2,1,0]),K([-1,3,1,-1]),K([-448,-225,99,52]),K([-1945,-5543,58,1490])])
 
gp: E = ellinit([Polrev([-1,3,1,-1]),Polrev([-1,-2,1,0]),Polrev([-1,3,1,-1]),Polrev([-448,-225,99,52]),Polrev([-1945,-5543,58,1490])], K);
 
magma: E := EllipticCurve([K![-1,3,1,-1],K![-1,-2,1,0],K![-1,3,1,-1],K![-448,-225,99,52],K![-1945,-5543,58,1490]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^3-2a^2-3a+4)\) = \((a^3-4a)\cdot(a^3-a^2-4a)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 57 \) = \(3\cdot19\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((2a^3+a^2-9a)\) = \((a^3-4a)^{3}\cdot(a^3-a^2-4a)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 513 \) = \(3^{3}\cdot19\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{72942210831600947693872817724388}{513} a^{3} - \frac{50608943902051469792355565222382}{513} a^{2} - \frac{85551740515727781170115992032406}{171} a + \frac{105130945456975830283712819159561}{513} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(\frac{31}{4} a^{3} - a^{2} - \frac{99}{4} a - \frac{11}{2} : \frac{15}{8} a^{3} - \frac{11}{8} a^{2} - \frac{37}{4} a + \frac{23}{4} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 48.457225533289753018498644355866476434 \)
Tamagawa product: \( 1 \)  =  \(1\cdot1\)
Torsion order: \(2\)
Leading coefficient: \( 1.09537577436418 \)
Analytic order of Ш: \( 4 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^3-4a)\) \(3\) \(1\) \(I_{3}\) Non-split multiplicative \(1\) \(1\) \(3\) \(3\)
\((a^3-a^2-4a)\) \(19\) \(1\) \(I_{1}\) Non-split multiplicative \(1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3, 4, 6 and 12.
Its isogeny class 57.1-a consists of curves linked by isogenies of degrees dividing 12.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.