Properties

Label 4.4.1957.1-47.1-a3
Base field 4.4.1957.1
Conductor norm \( 47 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.1957.1

Generator \(a\), with minimal polynomial \( x^{4} - 4 x^{2} - x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -1, -4, 0, 1]))
 
gp: K = nfinit(Polrev([1, -1, -4, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -1, -4, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{2}-a-1\right){x}{y}+\left(-a^{3}+a^{2}+4a-1\right){y}={x}^{3}+\left(-2a^{3}+a^{2}+8a\right){x}^{2}+\left(32a^{3}-58a^{2}-26a+21\right){x}-197a^{3}+305a^{2}+233a-53\)
sage: E = EllipticCurve([K([-1,-1,1,0]),K([0,8,1,-2]),K([-1,4,1,-1]),K([21,-26,-58,32]),K([-53,233,305,-197])])
 
gp: E = ellinit([Polrev([-1,-1,1,0]),Polrev([0,8,1,-2]),Polrev([-1,4,1,-1]),Polrev([21,-26,-58,32]),Polrev([-53,233,305,-197])], K);
 
magma: E := EllipticCurve([K![-1,-1,1,0],K![0,8,1,-2],K![-1,4,1,-1],K![21,-26,-58,32],K![-53,233,305,-197]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((2a^3-6a-1)\) = \((2a^3-6a-1)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 47 \) = \(47\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((143a^3-160a^2-507a-48)\) = \((2a^3-6a-1)^{6}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -10779215329 \) = \(-47^{6}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{11148830379801159533743}{10779215329} a^{3} + \frac{19666703347863657066005}{10779215329} a^{2} + \frac{9902963271520642369814}{10779215329} a - \frac{6320145061844672607397}{10779215329} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(\frac{1}{2} a^{3} + \frac{9}{4} a^{2} - \frac{19}{4} a - 4 : \frac{13}{4} a^{3} - \frac{7}{2} a^{2} - 7 a - \frac{5}{8} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 151.57094150224645908578392365247192544 \)
Tamagawa product: \( 2 \)
Torsion order: \(2\)
Leading coefficient: \( 1.71313086533475 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((2a^3-6a-1)\) \(47\) \(2\) \(I_{6}\) Non-split multiplicative \(1\) \(1\) \(6\) \(6\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3 and 6.
Its isogeny class 47.1-a consists of curves linked by isogenies of degrees dividing 6.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.