Properties

Label 4.4.1957.1-31.1-a3
Base field 4.4.1957.1
Conductor norm \( 31 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.1957.1

Generator \(a\), with minimal polynomial \( x^{4} - 4 x^{2} - x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -1, -4, 0, 1]))
 
gp: K = nfinit(Polrev([1, -1, -4, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -1, -4, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(-a^{3}+a^{2}+4a\right){y}={x}^{3}+\left(a^{3}-5a\right){x}^{2}+\left(-28a^{3}-38a^{2}+52a+54\right){x}-103a^{3}-116a^{2}+64a-103\)
sage: E = EllipticCurve([K([0,0,0,0]),K([0,-5,0,1]),K([0,4,1,-1]),K([54,52,-38,-28]),K([-103,64,-116,-103])])
 
gp: E = ellinit([Polrev([0,0,0,0]),Polrev([0,-5,0,1]),Polrev([0,4,1,-1]),Polrev([54,52,-38,-28]),Polrev([-103,64,-116,-103])], K);
 
magma: E := EllipticCurve([K![0,0,0,0],K![0,-5,0,1],K![0,4,1,-1],K![54,52,-38,-28],K![-103,64,-116,-103]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^3-5a)\) = \((a^3-5a)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 31 \) = \(31\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-104553a^3+109782a^2+96641a-349747)\) = \((a^3-5a)^{15}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -23465261991844685929951 \) = \(-31^{15}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{2536784722881790079590400000}{23465261991844685929951} a^{3} - \frac{1326320955838364685202235392}{23465261991844685929951} a^{2} + \frac{561810697949918688555835392}{23465261991844685929951} a + \frac{181027024945269059059658752}{23465261991844685929951} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-\frac{2}{9} a^{3} - \frac{8}{9} a^{2} + \frac{52}{3} a + \frac{266}{9} : -\frac{1508}{27} a^{3} - \frac{2441}{27} a^{2} + \frac{1087}{9} a + \frac{5048}{27} : 1\right)$
Height \(0.34092040505998611789502603636586092426\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.34092040505998611789502603636586092426 \)
Period: \( 2.3999846553071537014353139279692778687 \)
Tamagawa product: \( 15 \)
Torsion order: \(1\)
Leading coefficient: \( 1.10972992737054 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^3-5a)\) \(31\) \(15\) \(I_{15}\) Split multiplicative \(-1\) \(1\) \(15\) \(15\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3B
\(5\) 5B.1.2

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3, 5 and 15.
Its isogeny class 31.1-a consists of curves linked by isogenies of degrees dividing 15.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.