Properties

Label 4.4.1957.1-31.1-a1
Base field 4.4.1957.1
Conductor norm \( 31 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.1957.1

Generator \(a\), with minimal polynomial \( x^{4} - 4 x^{2} - x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -1, -4, 0, 1]))
 
gp: K = nfinit(Polrev([1, -1, -4, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -1, -4, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(-a^{3}+a^{2}+3a-1\right){y}={x}^{3}+\left(a^{3}-4a-1\right){x}^{2}+\left(69a^{3}+29a^{2}-257a-177\right){x}+387a^{3}+140a^{2}-1515a-1004\)
sage: E = EllipticCurve([K([0,0,0,0]),K([-1,-4,0,1]),K([-1,3,1,-1]),K([-177,-257,29,69]),K([-1004,-1515,140,387])])
 
gp: E = ellinit([Polrev([0,0,0,0]),Polrev([-1,-4,0,1]),Polrev([-1,3,1,-1]),Polrev([-177,-257,29,69]),Polrev([-1004,-1515,140,387])], K);
 
magma: E := EllipticCurve([K![0,0,0,0],K![-1,-4,0,1],K![-1,3,1,-1],K![-177,-257,29,69],K![-1004,-1515,140,387]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^3-5a)\) = \((a^3-5a)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 31 \) = \(31\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((6a^3+51a^2+6a-68)\) = \((a^3-5a)^{5}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -28629151 \) = \(-31^{5}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{180825454881646489600000}{28629151} a^{3} + \frac{318978801202372556800000}{28629151} a^{2} + \frac{160618453429727667920896}{28629151} a - \frac{102507894005169170706432}{28629151} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-\frac{29}{9} a^{3} - \frac{17}{9} a^{2} + \frac{52}{3} a + \frac{149}{9} : \frac{212}{27} a^{3} - \frac{16}{27} a^{2} - \frac{412}{9} a - \frac{998}{27} : 1\right)$
Height \(1.0227612151799583536850781090975827728\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 1.0227612151799583536850781090975827728 \)
Period: \( 2.3999846553071537014353139279692778687 \)
Tamagawa product: \( 5 \)
Torsion order: \(1\)
Leading coefficient: \( 1.10972992737054 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^3-5a)\) \(31\) \(5\) \(I_{5}\) Split multiplicative \(-1\) \(1\) \(5\) \(5\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3B
\(5\) 5B.1.2

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3, 5 and 15.
Its isogeny class 31.1-a consists of curves linked by isogenies of degrees dividing 15.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.