Properties

Label 4.4.1957.1-21.1-a12
Base field 4.4.1957.1
Conductor norm \( 21 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.1957.1

Generator \(a\), with minimal polynomial \( x^{4} - 4 x^{2} - x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -1, -4, 0, 1]))
 
gp: K = nfinit(Polrev([1, -1, -4, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -1, -4, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(a+1\right){x}{y}+\left(a^{2}-2\right){y}={x}^{3}+\left(a^{3}-3a\right){x}^{2}+\left(59a^{3}-73a^{2}-337a-189\right){x}+583a^{3}-32a^{2}-2275a-1390\)
sage: E = EllipticCurve([K([1,1,0,0]),K([0,-3,0,1]),K([-2,0,1,0]),K([-189,-337,-73,59]),K([-1390,-2275,-32,583])])
 
gp: E = ellinit([Polrev([1,1,0,0]),Polrev([0,-3,0,1]),Polrev([-2,0,1,0]),Polrev([-189,-337,-73,59]),Polrev([-1390,-2275,-32,583])], K);
 
magma: E := EllipticCurve([K![1,1,0,0],K![0,-3,0,1],K![-2,0,1,0],K![-189,-337,-73,59],K![-1390,-2275,-32,583]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-2a^3+a^2+7a)\) = \((a^3-4a)\cdot(a^2-2)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 21 \) = \(3\cdot7\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((56a^3+57a^2-209a-69)\) = \((a^3-4a)^{4}\cdot(a^2-2)^{8}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -466948881 \) = \(-3^{4}\cdot7^{8}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{3925517460083619669474871874}{466948881} a^{3} - \frac{2723612167164915292630390720}{466948881} a^{2} - \frac{4604122185339962156855866072}{155649627} a + \frac{5657812633917689859889126471}{466948881} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-7 a^{3} - \frac{25}{4} a^{2} + \frac{45}{2} a + \frac{55}{4} : \frac{53}{8} a^{3} + \frac{43}{8} a^{2} - \frac{117}{8} a - \frac{75}{8} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 2.0527064540460882150816786006055875607 \)
Tamagawa product: \( 4 \)  =  \(2\cdot2\)
Torsion order: \(2\)
Leading coefficient: \( 0.742422999880055 \)
Analytic order of Ш: \( 16 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^3-4a)\) \(3\) \(2\) \(I_{4}\) Non-split multiplicative \(1\) \(1\) \(4\) \(4\)
\((a^2-2)\) \(7\) \(2\) \(I_{8}\) Non-split multiplicative \(1\) \(1\) \(8\) \(8\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3, 4, 6, 8, 12 and 24.
Its isogeny class 21.1-a consists of curves linked by isogenies of degrees dividing 24.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.