Properties

Label 4.4.18625.1-5.1-c1
Base field 4.4.18625.1
Conductor norm \( 5 \)
CM no
Base change no
Q-curve no
Torsion order \( 4 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.18625.1

Generator \(a\), with minimal polynomial \( x^{4} - x^{3} - 14 x^{2} + 9 x + 41 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([41, 9, -14, -1, 1]))
 
gp: K = nfinit(Polrev([41, 9, -14, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![41, 9, -14, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(\frac{1}{6}a^{3}+a^{2}-\frac{4}{3}a-\frac{41}{6}\right){x}{y}={x}^{3}+\left(\frac{1}{6}a^{3}+a^{2}-\frac{1}{3}a-\frac{35}{6}\right){x}^{2}+\left(\frac{8}{3}a^{3}+6a^{2}-\frac{52}{3}a-\frac{97}{3}\right){x}\)
sage: E = EllipticCurve([K([-41/6,-4/3,1,1/6]),K([-35/6,-1/3,1,1/6]),K([0,0,0,0]),K([-97/3,-52/3,6,8/3]),K([0,0,0,0])])
 
gp: E = ellinit([Polrev([-41/6,-4/3,1,1/6]),Polrev([-35/6,-1/3,1,1/6]),Polrev([0,0,0,0]),Polrev([-97/3,-52/3,6,8/3]),Polrev([0,0,0,0])], K);
 
magma: E := EllipticCurve([K![-41/6,-4/3,1,1/6],K![-35/6,-1/3,1,1/6],K![0,0,0,0],K![-97/3,-52/3,6,8/3],K![0,0,0,0]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((1/2a^3+a^2-5a-21/2)\) = \((1/2a^3+a^2-5a-21/2)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 5 \) = \(5\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((1/3a^3-8/3a-2/3)\) = \((1/2a^3+a^2-5a-21/2)^{2}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 25 \) = \(5^{2}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{931137}{10} a^{3} - \frac{1220538}{5} a^{2} - \frac{4495659}{5} a + \frac{4618045}{2} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\oplus\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generators: $\left(0 : 0 : 1\right)$ $\left(-\frac{5}{24} a^{3} - \frac{3}{4} a^{2} + \frac{7}{6} a + \frac{91}{24} : \frac{7}{8} a^{3} + \frac{15}{8} a^{2} - \frac{49}{8} a - \frac{41}{4} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 2207.8591439177658535061494092466941289 \)
Tamagawa product: \( 2 \)
Torsion order: \(4\)
Leading coefficient: \( 2.02224250884547 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((1/2a^3+a^2-5a-21/2)\) \(5\) \(2\) \(I_{2}\) Non-split multiplicative \(1\) \(1\) \(2\) \(2\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2Cs

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2 and 4.
Its isogeny class 5.1-c consists of curves linked by isogenies of degrees dividing 8.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.