Properties

Label 4.4.18625.1-5.1-b3
Base field 4.4.18625.1
Conductor norm \( 5 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.18625.1

Generator \(a\), with minimal polynomial \( x^{4} - x^{3} - 14 x^{2} + 9 x + 41 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([41, 9, -14, -1, 1]))
 
gp: K = nfinit(Polrev([41, 9, -14, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![41, 9, -14, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{2}-6\right){x}{y}+\left(a^{2}-7\right){y}={x}^{3}+\left(-a^{2}-a+6\right){x}^{2}+\left(\frac{41}{3}a^{3}+2a^{2}-\frac{418}{3}a-\frac{148}{3}\right){x}+\frac{245}{6}a^{3}+63a^{2}-\frac{1274}{3}a-\frac{4267}{6}\)
sage: E = EllipticCurve([K([-6,0,1,0]),K([6,-1,-1,0]),K([-7,0,1,0]),K([-148/3,-418/3,2,41/3]),K([-4267/6,-1274/3,63,245/6])])
 
gp: E = ellinit([Polrev([-6,0,1,0]),Polrev([6,-1,-1,0]),Polrev([-7,0,1,0]),Polrev([-148/3,-418/3,2,41/3]),Polrev([-4267/6,-1274/3,63,245/6])], K);
 
magma: E := EllipticCurve([K![-6,0,1,0],K![6,-1,-1,0],K![-7,0,1,0],K![-148/3,-418/3,2,41/3],K![-4267/6,-1274/3,63,245/6]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((1/2a^3+a^2-5a-21/2)\) = \((1/2a^3+a^2-5a-21/2)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 5 \) = \(5\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((25)\) = \((1/2a^3+a^2-5a-21/2)^{8}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 390625 \) = \(5^{8}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{10364321917}{150} a^{3} - \frac{503906304}{5} a^{2} + \frac{10801512773}{15} a + \frac{172670364179}{150} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(\frac{2}{3} a^{3} + a^{2} - \frac{19}{3} a - \frac{22}{3} : -\frac{1}{6} a^{3} - 5 a^{2} - \frac{5}{3} a + \frac{227}{6} : 1\right)$
Height \(0.57768645107962011198383452552595973650\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(\frac{5}{12} a^{3} + \frac{1}{2} a^{2} - \frac{49}{12} a - \frac{73}{12} : -\frac{1}{12} a^{3} - \frac{1}{2} a^{2} + \frac{5}{12} a + \frac{97}{24} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.57768645107962011198383452552595973650 \)
Period: \( 66.160913572455727379546333958272267014 \)
Tamagawa product: \( 8 \)
Torsion order: \(2\)
Leading coefficient: \( 2.24045136886674 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((1/2a^3+a^2-5a-21/2)\) \(5\) \(8\) \(I_{8}\) Split multiplicative \(-1\) \(1\) \(8\) \(8\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 4 and 8.
Its isogeny class 5.1-b consists of curves linked by isogenies of degrees dividing 8.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.