Properties

Label 4.4.18625.1-5.1-b1
Base field 4.4.18625.1
Conductor norm \( 5 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.18625.1

Generator \(a\), with minimal polynomial \( x^{4} - x^{3} - 14 x^{2} + 9 x + 41 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([41, 9, -14, -1, 1]))
 
gp: K = nfinit(Polrev([41, 9, -14, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![41, 9, -14, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(\frac{1}{6}a^{3}+a^{2}-\frac{4}{3}a-\frac{41}{6}\right){x}{y}+\left(\frac{1}{6}a^{3}-\frac{4}{3}a+\frac{7}{6}\right){y}={x}^{3}+\left(\frac{1}{6}a^{3}+a^{2}-\frac{7}{3}a-\frac{47}{6}\right){x}^{2}+\left(\frac{1}{6}a^{3}+a^{2}-\frac{1}{3}a-\frac{5}{6}\right){x}+\frac{5}{6}a^{3}+2a^{2}-\frac{17}{3}a-\frac{85}{6}\)
sage: E = EllipticCurve([K([-41/6,-4/3,1,1/6]),K([-47/6,-7/3,1,1/6]),K([7/6,-4/3,0,1/6]),K([-5/6,-1/3,1,1/6]),K([-85/6,-17/3,2,5/6])])
 
gp: E = ellinit([Polrev([-41/6,-4/3,1,1/6]),Polrev([-47/6,-7/3,1,1/6]),Polrev([7/6,-4/3,0,1/6]),Polrev([-5/6,-1/3,1,1/6]),Polrev([-85/6,-17/3,2,5/6])], K);
 
magma: E := EllipticCurve([K![-41/6,-4/3,1,1/6],K![-47/6,-7/3,1,1/6],K![7/6,-4/3,0,1/6],K![-5/6,-1/3,1,1/6],K![-85/6,-17/3,2,5/6]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((1/2a^3+a^2-5a-21/2)\) = \((1/2a^3+a^2-5a-21/2)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 5 \) = \(5\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((1/6a^3-a^2-1/3a+25/6)\) = \((1/2a^3+a^2-5a-21/2)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -5 \) = \(-5\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{250992497}{30} a^{3} + \frac{170938389}{5} a^{2} + \frac{174221012}{15} a - \frac{3334232987}{30} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-\frac{1}{3} a^{3} - a^{2} + \frac{8}{3} a + \frac{32}{3} : -\frac{1}{2} a^{3} - a^{2} + 8 a + \frac{17}{2} : 1\right)$
Height \(1.1553729021592402239676690510519194730\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-\frac{1}{12} a^{3} - \frac{3}{4} a^{2} + \frac{11}{12} a + \frac{59}{12} : \frac{5}{24} a^{3} + \frac{5}{8} a^{2} - \frac{37}{24} a - \frac{55}{24} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 1.1553729021592402239676690510519194730 \)
Period: \( 264.64365428982290951818533583308906806 \)
Tamagawa product: \( 1 \)
Torsion order: \(2\)
Leading coefficient: \( 2.24045136886674 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((1/2a^3+a^2-5a-21/2)\) \(5\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 4 and 8.
Its isogeny class 5.1-b consists of curves linked by isogenies of degrees dividing 8.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.