Properties

Label 4.4.18625.1-20.1-b2
Base field 4.4.18625.1
Conductor norm \( 20 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.18625.1

Generator \(a\), with minimal polynomial \( x^{4} - x^{3} - 14 x^{2} + 9 x + 41 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([41, 9, -14, -1, 1]))
 
gp: K = nfinit(Polrev([41, 9, -14, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![41, 9, -14, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(\frac{1}{6}a^{3}-\frac{1}{3}a+\frac{1}{6}\right){x}{y}+\left(\frac{1}{6}a^{3}-\frac{1}{3}a+\frac{7}{6}\right){y}={x}^{3}+\left(-\frac{1}{6}a^{3}+a^{2}+\frac{1}{3}a-\frac{49}{6}\right){x}^{2}+\left(\frac{15}{2}a^{3}+35a^{2}-87a-\frac{723}{2}\right){x}-\frac{671}{6}a^{3}-103a^{2}+\frac{3434}{3}a+\frac{7489}{6}\)
sage: E = EllipticCurve([K([1/6,-1/3,0,1/6]),K([-49/6,1/3,1,-1/6]),K([7/6,-1/3,0,1/6]),K([-723/2,-87,35,15/2]),K([7489/6,3434/3,-103,-671/6])])
 
gp: E = ellinit([Polrev([1/6,-1/3,0,1/6]),Polrev([-49/6,1/3,1,-1/6]),Polrev([7/6,-1/3,0,1/6]),Polrev([-723/2,-87,35,15/2]),Polrev([7489/6,3434/3,-103,-671/6])], K);
 
magma: E := EllipticCurve([K![1/6,-1/3,0,1/6],K![-49/6,1/3,1,-1/6],K![7/6,-1/3,0,1/6],K![-723/2,-87,35,15/2],K![7489/6,3434/3,-103,-671/6]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-1/3a^3-a^2+8/3a+20/3)\) = \((-a+3)\cdot(1/2a^3+a^2-5a-21/2)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 20 \) = \(4\cdot5\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((5a+5)\) = \((-a+3)\cdot(1/2a^3+a^2-5a-21/2)^{5}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 12500 \) = \(4\cdot5^{5}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{385810183859}{50} a^{3} - \frac{565777507637}{50} a^{2} + \frac{4001928738953}{50} a + \frac{3202354723143}{25} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(\frac{1}{6} a^{3} - 3 a^{2} - \frac{4}{3} a + \frac{175}{6} : \frac{17}{6} a^{3} - 5 a^{2} - \frac{86}{3} a + \frac{287}{6} : 1\right)$
Height \(0.26017150632276335782970590683547784978\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-\frac{17}{24} a^{3} - a^{2} + \frac{89}{12} a + \frac{205}{24} : \frac{19}{24} a^{3} + \frac{7}{8} a^{2} - \frac{167}{24} a - \frac{65}{6} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.26017150632276335782970590683547784978 \)
Period: \( 380.17925964657120673240314181812312393 \)
Tamagawa product: \( 5 \)  =  \(1\cdot5\)
Torsion order: \(2\)
Leading coefficient: \( 3.62384835435329 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a+3)\) \(4\) \(1\) \(I_{1}\) Non-split multiplicative \(1\) \(1\) \(1\) \(1\)
\((1/2a^3+a^2-5a-21/2)\) \(5\) \(5\) \(I_{5}\) Split multiplicative \(-1\) \(1\) \(5\) \(5\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2.
Its isogeny class 20.1-b consists of curves linked by isogenies of degree 2.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.