Properties

Label 4.4.18625.1-11.2-b3
Base field 4.4.18625.1
Conductor norm \( 11 \)
CM no
Base change no
Q-curve no
Torsion order \( 4 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.18625.1

Generator \(a\), with minimal polynomial \( x^{4} - x^{3} - 14 x^{2} + 9 x + 41 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([41, 9, -14, -1, 1]))
 
gp: K = nfinit(Polrev([41, 9, -14, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![41, 9, -14, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(\frac{1}{6}a^{3}-\frac{1}{3}a+\frac{1}{6}\right){x}{y}+\left(a^{2}-6\right){y}={x}^{3}+\left(a^{2}-7\right){x}^{2}+\left(\frac{4}{3}a^{3}+2a^{2}-\frac{41}{3}a-\frac{11}{3}\right){x}-\frac{1}{6}a^{3}+5a^{2}+\frac{13}{3}a-\frac{205}{6}\)
sage: E = EllipticCurve([K([1/6,-1/3,0,1/6]),K([-7,0,1,0]),K([-6,0,1,0]),K([-11/3,-41/3,2,4/3]),K([-205/6,13/3,5,-1/6])])
 
gp: E = ellinit([Polrev([1/6,-1/3,0,1/6]),Polrev([-7,0,1,0]),Polrev([-6,0,1,0]),Polrev([-11/3,-41/3,2,4/3]),Polrev([-205/6,13/3,5,-1/6])], K);
 
magma: E := EllipticCurve([K![1/6,-1/3,0,1/6],K![-7,0,1,0],K![-6,0,1,0],K![-11/3,-41/3,2,4/3],K![-205/6,13/3,5,-1/6]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((1/6a^3-a^2-1/3a+31/6)\) = \((1/6a^3-a^2-1/3a+31/6)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 11 \) = \(11\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((5/6a^3-a^2+1/3a-31/6)\) = \((1/6a^3-a^2-1/3a+31/6)^{4}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 14641 \) = \(11^{4}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{3082224043}{87846} a^{3} - \frac{746018190}{14641} a^{2} + \frac{16157491552}{43923} a + \frac{51758123999}{87846} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-\frac{1}{12} a^{3} - \frac{3}{4} a^{2} + \frac{2}{3} a + \frac{65}{12} : \frac{7}{24} a^{3} + \frac{1}{2} a^{2} - \frac{19}{12} a - \frac{55}{12} : 1\right)$
Height \(0.65253556225833398607168046221497666329\)
Torsion structure: \(\Z/4\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-a^{2} + 8 : \frac{2}{3} a^{3} - a^{2} - \frac{16}{3} a + \frac{26}{3} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.65253556225833398607168046221497666329 \)
Period: \( 756.70631293927004821000076957810414602 \)
Tamagawa product: \( 4 \)
Torsion order: \(4\)
Leading coefficient: \( 3.61812362218058 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((1/6a^3-a^2-1/3a+31/6)\) \(11\) \(4\) \(I_{4}\) Split multiplicative \(-1\) \(1\) \(4\) \(4\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2 and 4.
Its isogeny class 11.2-b consists of curves linked by isogenies of degrees dividing 4.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.