Properties

Label 4.4.18625.1-11.2-b2
Base field 4.4.18625.1
Conductor norm \( 11 \)
CM no
Base change no
Q-curve no
Torsion order \( 4 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.18625.1

Generator \(a\), with minimal polynomial \( x^{4} - x^{3} - 14 x^{2} + 9 x + 41 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([41, 9, -14, -1, 1]))
 
gp: K = nfinit(Polrev([41, 9, -14, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![41, 9, -14, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(\frac{1}{6}a^{3}+a^{2}-\frac{1}{3}a-\frac{41}{6}\right){x}{y}+{y}={x}^{3}+\left(-\frac{1}{6}a^{3}+\frac{1}{3}a+\frac{5}{6}\right){x}^{2}+\left(\frac{22}{3}a^{3}-21a^{2}-\frac{62}{3}a+\frac{205}{3}\right){x}-\frac{193}{6}a^{3}+102a^{2}+\frac{202}{3}a-\frac{1825}{6}\)
sage: E = EllipticCurve([K([-41/6,-1/3,1,1/6]),K([5/6,1/3,0,-1/6]),K([1,0,0,0]),K([205/3,-62/3,-21,22/3]),K([-1825/6,202/3,102,-193/6])])
 
gp: E = ellinit([Polrev([-41/6,-1/3,1,1/6]),Polrev([5/6,1/3,0,-1/6]),Polrev([1,0,0,0]),Polrev([205/3,-62/3,-21,22/3]),Polrev([-1825/6,202/3,102,-193/6])], K);
 
magma: E := EllipticCurve([K![-41/6,-1/3,1,1/6],K![5/6,1/3,0,-1/6],K![1,0,0,0],K![205/3,-62/3,-21,22/3],K![-1825/6,202/3,102,-193/6]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((1/6a^3-a^2-1/3a+31/6)\) = \((1/6a^3-a^2-1/3a+31/6)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 11 \) = \(11\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-1/6a^3+10/3a+23/6)\) = \((1/6a^3-a^2-1/3a+31/6)^{2}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 121 \) = \(11^{2}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{5636725301}{242} a^{3} + \frac{6386985120}{121} a^{2} - \frac{18600594704}{121} a - \frac{70767974511}{242} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-\frac{13}{24} a^{3} + \frac{1}{16} a^{2} + \frac{65}{24} a + \frac{61}{48} : \frac{215}{192} a^{3} + \frac{265}{64} a^{2} - \frac{1555}{192} a - \frac{4351}{192} : 1\right)$
Height \(1.3050711245166679721433609244299533266\)
Torsion structure: \(\Z/2\Z\oplus\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generators: $\left(-\frac{9}{4} a^{2} + \frac{5}{2} a + \frac{31}{4} : \frac{35}{24} a^{3} + \frac{21}{8} a^{2} - \frac{187}{24} a - \frac{463}{24} : 1\right)$ $\left(-\frac{1}{6} a^{3} + a^{2} + \frac{1}{3} a - \frac{25}{6} : -\frac{1}{2} a^{3} + 3 a - \frac{1}{2} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 1.3050711245166679721433609244299533266 \)
Period: \( 756.70631293927004821000076957810414603 \)
Tamagawa product: \( 2 \)
Torsion order: \(4\)
Leading coefficient: \( 3.61812362218058 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((1/6a^3-a^2-1/3a+31/6)\) \(11\) \(2\) \(I_{2}\) Split multiplicative \(-1\) \(1\) \(2\) \(2\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2Cs

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2.
Its isogeny class 11.2-b consists of curves linked by isogenies of degrees dividing 4.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.