Properties

Label 4.4.18625.1-11.1-b1
Base field 4.4.18625.1
Conductor norm \( 11 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.18625.1

Generator \(a\), with minimal polynomial \( x^{4} - x^{3} - 14 x^{2} + 9 x + 41 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([41, 9, -14, -1, 1]))
 
gp: K = nfinit(Polrev([41, 9, -14, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![41, 9, -14, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{2}-6\right){x}{y}+\left(\frac{1}{6}a^{3}+a^{2}-\frac{4}{3}a-\frac{35}{6}\right){y}={x}^{3}+\left(-\frac{1}{6}a^{3}+a^{2}+\frac{1}{3}a-\frac{37}{6}\right){x}^{2}+\left(228a^{3}+349a^{2}-2374a-3918\right){x}+\frac{8573}{3}a^{3}+4234a^{2}-\frac{88993}{3}a-\frac{143503}{3}\)
sage: E = EllipticCurve([K([-6,0,1,0]),K([-37/6,1/3,1,-1/6]),K([-35/6,-4/3,1,1/6]),K([-3918,-2374,349,228]),K([-143503/3,-88993/3,4234,8573/3])])
 
gp: E = ellinit([Polrev([-6,0,1,0]),Polrev([-37/6,1/3,1,-1/6]),Polrev([-35/6,-4/3,1,1/6]),Polrev([-3918,-2374,349,228]),Polrev([-143503/3,-88993/3,4234,8573/3])], K);
 
magma: E := EllipticCurve([K![-6,0,1,0],K![-37/6,1/3,1,-1/6],K![-35/6,-4/3,1,1/6],K![-3918,-2374,349,228],K![-143503/3,-88993/3,4234,8573/3]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((1/6a^3-7/3a-11/6)\) = \((1/6a^3-7/3a-11/6)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 11 \) = \(11\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-1/6a^3+7/3a+11/6)\) = \((1/6a^3-7/3a-11/6)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 11 \) = \(11\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{254322295397744397}{22} a^{3} - \frac{336710867092897954}{11} a^{2} - \frac{1225387941836094242}{11} a + \frac{6327550891105538363}{22} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(\frac{19}{6} a^{3} + \frac{5}{2} a^{2} - \frac{97}{3} a - \frac{403}{12} : -\frac{23}{3} a^{3} - \frac{69}{4} a^{2} + \frac{241}{3} a + \frac{4577}{24} : 1\right)$
Height \(2.6101422490333359442867218488599066531\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(\frac{35}{12} a^{3} + \frac{9}{2} a^{2} - \frac{361}{12} a - \frac{643}{12} : -\frac{5}{12} a^{3} + a^{2} + \frac{43}{12} a - \frac{139}{24} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 2.6101422490333359442867218488599066531 \)
Period: \( 47.294144558704378013125048098631509126 \)
Tamagawa product: \( 1 \)
Torsion order: \(2\)
Leading coefficient: \( 3.61812362218058 \)
Analytic order of Ш: \( 4 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((1/6a^3-7/3a-11/6)\) \(11\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2 and 4.
Its isogeny class 11.1-b consists of curves linked by isogenies of degrees dividing 4.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.