Properties

Label 4.4.18097.1-3.1-b6
Base field 4.4.18097.1
Conductor norm \( 3 \)
CM no
Base change no
Q-curve no
Torsion order \( 4 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.18097.1

Generator \(a\), with minimal polynomial \( x^{4} - x^{3} - 7 x^{2} + 6 x + 4 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([4, 6, -7, -1, 1]))
 
gp: K = nfinit(Polrev([4, 6, -7, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![4, 6, -7, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{5}{2}a+3\right){x}{y}+\left(\frac{1}{2}a^{3}+\frac{1}{2}a^{2}-\frac{3}{2}a-2\right){y}={x}^{3}+\left(a^{2}-4\right){x}^{2}+\left(-\frac{1}{2}a^{3}-\frac{3}{2}a^{2}+\frac{1}{2}a+3\right){x}-\frac{3}{2}a^{3}-\frac{5}{2}a^{2}+\frac{9}{2}a+2\)
sage: E = EllipticCurve([K([3,-5/2,-1/2,1/2]),K([-4,0,1,0]),K([-2,-3/2,1/2,1/2]),K([3,1/2,-3/2,-1/2]),K([2,9/2,-5/2,-3/2])])
 
gp: E = ellinit([Polrev([3,-5/2,-1/2,1/2]),Polrev([-4,0,1,0]),Polrev([-2,-3/2,1/2,1/2]),Polrev([3,1/2,-3/2,-1/2]),Polrev([2,9/2,-5/2,-3/2])], K);
 
magma: E := EllipticCurve([K![3,-5/2,-1/2,1/2],K![-4,0,1,0],K![-2,-3/2,1/2,1/2],K![3,1/2,-3/2,-1/2],K![2,9/2,-5/2,-3/2]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((1/2a^3-1/2a^2-5/2a+1)\) = \((1/2a^3-1/2a^2-5/2a+1)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 3 \) = \(3\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((4a^2-6a-13)\) = \((1/2a^3-1/2a^2-5/2a+1)^{8}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 6561 \) = \(3^{8}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{1432433}{13122} a^{3} + \frac{341449}{4374} a^{2} + \frac{7045667}{13122} a + \frac{12831643}{6561} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(a + 1 : 0 : 1\right)$
Height \(0.11470170991016345464116476440044602032\)
Torsion structure: \(\Z/2\Z\oplus\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generators: $\left(-\frac{1}{4} a^{2} : -\frac{1}{8} a^{3} - \frac{1}{4} a^{2} + \frac{1}{2} a + 1 : 1\right)$ $\left(\frac{1}{8} a^{3} + \frac{1}{8} a^{2} - \frac{1}{8} a : -\frac{3}{8} a^{3} - \frac{1}{2} a^{2} + \frac{5}{4} a + \frac{9}{8} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.11470170991016345464116476440044602032 \)
Period: \( 1379.0700360493683715292218262826953405 \)
Tamagawa product: \( 8 \)
Torsion order: \(4\)
Leading coefficient: \( 2.35170540334628 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((1/2a^3-1/2a^2-5/2a+1)\) \(3\) \(8\) \(I_{8}\) Split multiplicative \(-1\) \(1\) \(8\) \(8\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2Cs

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2 and 4.
Its isogeny class 3.1-b consists of curves linked by isogenies of degrees dividing 8.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.