Properties

Label 4.4.18097.1-3.1-b3
Base field 4.4.18097.1
Conductor norm \( 3 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.18097.1

Generator \(a\), with minimal polynomial \( x^{4} - x^{3} - 7 x^{2} + 6 x + 4 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([4, 6, -7, -1, 1]))
 
gp: K = nfinit(Polrev([4, 6, -7, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![4, 6, -7, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{3}{2}a+2\right){x}{y}+a{y}={x}^{3}+\left(a^{2}-a-3\right){x}^{2}+\left(-2a^{3}+4a^{2}+3a-3\right){x}-2a^{3}+6a^{2}-3a-5\)
sage: E = EllipticCurve([K([2,-3/2,-1/2,1/2]),K([-3,-1,1,0]),K([0,1,0,0]),K([-3,3,4,-2]),K([-5,-3,6,-2])])
 
gp: E = ellinit([Polrev([2,-3/2,-1/2,1/2]),Polrev([-3,-1,1,0]),Polrev([0,1,0,0]),Polrev([-3,3,4,-2]),Polrev([-5,-3,6,-2])], K);
 
magma: E := EllipticCurve([K![2,-3/2,-1/2,1/2],K![-3,-1,1,0],K![0,1,0,0],K![-3,3,4,-2],K![-5,-3,6,-2]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((1/2a^3-1/2a^2-5/2a+1)\) = \((1/2a^3-1/2a^2-5/2a+1)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 3 \) = \(3\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-1/2a^3-1/2a^2+7/2a-1)\) = \((1/2a^3-1/2a^2-5/2a+1)^{4}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 81 \) = \(3^{4}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{12420053}{162} a^{3} + \frac{3369131}{54} a^{2} - \frac{47076827}{162} a + \frac{6787868}{81} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-2 a^{3} - a^{2} + 13 a + 5 : \frac{15}{2} a^{3} + \frac{5}{2} a^{2} - \frac{95}{2} a - 20 : 1\right)$
Height \(0.22940341982032690928232952880089204064\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-\frac{1}{4} a^{3} - \frac{1}{2} a^{2} + 2 a : \frac{5}{8} a^{3} - \frac{3}{4} a^{2} - \frac{3}{2} a + 1 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.22940341982032690928232952880089204064 \)
Period: \( 344.76750901234209288230545657067383513 \)
Tamagawa product: \( 4 \)
Torsion order: \(2\)
Leading coefficient: \( 2.35170540334628 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((1/2a^3-1/2a^2-5/2a+1)\) \(3\) \(4\) \(I_{4}\) Split multiplicative \(-1\) \(1\) \(4\) \(4\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 4 and 8.
Its isogeny class 3.1-b consists of curves linked by isogenies of degrees dividing 8.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.