Properties

Label 4.4.18097.1-12.1-b3
Base field 4.4.18097.1
Conductor norm \( 12 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.18097.1

Generator \(a\), with minimal polynomial \( x^{4} - x^{3} - 7 x^{2} + 6 x + 4 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([4, 6, -7, -1, 1]))
 
gp: K = nfinit(Polrev([4, 6, -7, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![4, 6, -7, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(\frac{1}{2}a^{3}+\frac{1}{2}a^{2}-\frac{5}{2}a-1\right){x}{y}+{y}={x}^{3}+\left(\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{5}{2}a+1\right){x}^{2}+\left(-\frac{81}{2}a^{3}-\frac{105}{2}a^{2}+\frac{687}{2}a+163\right){x}-\frac{135}{2}a^{3}-\frac{537}{2}a^{2}+\frac{1913}{2}a+480\)
sage: E = EllipticCurve([K([-1,-5/2,1/2,1/2]),K([1,-5/2,-1/2,1/2]),K([1,0,0,0]),K([163,687/2,-105/2,-81/2]),K([480,1913/2,-537/2,-135/2])])
 
gp: E = ellinit([Polrev([-1,-5/2,1/2,1/2]),Polrev([1,-5/2,-1/2,1/2]),Polrev([1,0,0,0]),Polrev([163,687/2,-105/2,-81/2]),Polrev([480,1913/2,-537/2,-135/2])], K);
 
magma: E := EllipticCurve([K![-1,-5/2,1/2,1/2],K![1,-5/2,-1/2,1/2],K![1,0,0,0],K![163,687/2,-105/2,-81/2],K![480,1913/2,-537/2,-135/2]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-a-2)\) = \((1/2a^3-1/2a^2-5/2a+1)\cdot(a)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 12 \) = \(3\cdot4\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-5a^3+a^2+24a-8)\) = \((1/2a^3-1/2a^2-5/2a+1)^{8}\cdot(a)^{2}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -104976 \) = \(-3^{8}\cdot4^{2}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{2757970737714201205}{52488} a^{3} - \frac{1334205989042635679}{17496} a^{2} - \frac{17499449907519419455}{52488} a + \frac{12222583887443291953}{26244} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-a^{2} + 2 a + 1 : 5 a^{3} + 2 a^{2} - 32 a - 15 : 1\right)$
Height \(0.72148893907722958388155153276691542837\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(\frac{3}{8} a^{3} - \frac{7}{8} a^{2} - \frac{5}{8} a - 1 : \frac{1}{2} a^{3} + \frac{3}{4} a^{2} - 3 a - \frac{15}{8} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.72148893907722958388155153276691542837 \)
Period: \( 40.231299171930987209164867418554371713 \)
Tamagawa product: \( 16 \)  =  \(2^{3}\cdot2\)
Torsion order: \(2\)
Leading coefficient: \( 3.45231507116428 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((1/2a^3-1/2a^2-5/2a+1)\) \(3\) \(8\) \(I_{8}\) Split multiplicative \(-1\) \(1\) \(8\) \(8\)
\((a)\) \(4\) \(2\) \(I_{2}\) Non-split multiplicative \(1\) \(1\) \(2\) \(2\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 4 and 8.
Its isogeny class 12.1-b consists of curves linked by isogenies of degrees dividing 8.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.