Properties

Label 4.4.17725.1-41.2-a4
Base field 4.4.17725.1
Conductor norm \( 41 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.17725.1

Generator \(a\), with minimal polynomial \( x^{4} - 2 x^{3} - 12 x^{2} + 13 x + 41 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([41, 13, -12, -2, 1]))
 
gp: K = nfinit(Polrev([41, 13, -12, -2, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![41, 13, -12, -2, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{3}-a^{2}-6a+1\right){x}{y}+\left(a^{3}-a^{2}-7a\right){y}={x}^{3}+\left(a^{3}-2a^{2}-5a+8\right){x}^{2}+\left(12a^{3}-15a^{2}-66a+12\right){x}+23a^{3}-41a^{2}-113a+84\)
sage: E = EllipticCurve([K([1,-6,-1,1]),K([8,-5,-2,1]),K([0,-7,-1,1]),K([12,-66,-15,12]),K([84,-113,-41,23])])
 
gp: E = ellinit([Polrev([1,-6,-1,1]),Polrev([8,-5,-2,1]),Polrev([0,-7,-1,1]),Polrev([12,-66,-15,12]),Polrev([84,-113,-41,23])], K);
 
magma: E := EllipticCurve([K![1,-6,-1,1],K![8,-5,-2,1],K![0,-7,-1,1],K![12,-66,-15,12],K![84,-113,-41,23]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a-1)\) = \((a-1)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 41 \) = \(41\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((80a^3+37a^2-595a-834)\) = \((a-1)^{6}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -4750104241 \) = \(-41^{6}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{1496441838018450}{4750104241} a^{3} + \frac{7679003528285540}{4750104241} a^{2} + \frac{3087746109933194}{4750104241} a - \frac{756285282553335}{115856201} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(\frac{1}{4} a^{3} - \frac{5}{4} a^{2} - \frac{3}{4} a + 4 : \frac{7}{8} a^{3} - \frac{1}{2} a^{2} - \frac{37}{8} a - 2 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 59.586250184918610389639255640296011703 \)
Tamagawa product: \( 2 \)
Torsion order: \(2\)
Leading coefficient: \( 2.01402773828800 \)
Analytic order of Ш: \( 9 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a-1)\) \(41\) \(2\) \(I_{6}\) Non-split multiplicative \(1\) \(1\) \(6\) \(6\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3 and 6.
Its isogeny class 41.2-a consists of curves linked by isogenies of degrees dividing 6.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.