Properties

Label 4.4.1600.1-400.1-a1
Base field \(\Q(\sqrt{2}, \sqrt{5})\)
Conductor norm \( 400 \)
CM no
Base change yes
Q-curve yes
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{2}, \sqrt{5})\)

Generator \(a\), with minimal polynomial \( x^{4} - 6 x^{2} + 4 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([4, 0, -6, 0, 1]))
 
gp: K = nfinit(Polrev([4, 0, -6, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![4, 0, -6, 0, 1]);
 

Weierstrass equation

\({y}^2+a{x}{y}={x}^{3}-\frac{1}{2}a^{2}{x}^{2}+\left(\frac{25}{2}a^{2}-89\right){x}+29a^{2}-187\)
sage: E = EllipticCurve([K([0,1,0,0]),K([0,0,-1/2,0]),K([0,0,0,0]),K([-89,0,25/2,0]),K([-187,0,29,0])])
 
gp: E = ellinit([Polrev([0,1,0,0]),Polrev([0,0,-1/2,0]),Polrev([0,0,0,0]),Polrev([-89,0,25/2,0]),Polrev([-187,0,29,0])], K);
 
magma: E := EllipticCurve([K![0,1,0,0],K![0,0,-1/2,0],K![0,0,0,0],K![-89,0,25/2,0],K![-187,0,29,0]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-2a^2+6)\) = \((1/2a^3-2a)^{2}\cdot(-a^2+3)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 400 \) = \(4^{2}\cdot25\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((20a^2-60)\) = \((1/2a^3-2a)^{4}\cdot(-a^2+3)^{3}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 4000000 \) = \(4^{4}\cdot25^{3}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{85201943541088}{25} a^{2} - \frac{65088492979664}{25} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(\frac{3}{2} a^{3} + 3 a^{2} - 3 a - 7 : -\frac{7}{2} a^{3} - 12 a^{2} - 4 a + 9 : 1\right)$
Height \(0.84289541153501969768272794349819895677\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-\frac{11}{4} a^{2} + 12 : \frac{11}{8} a^{3} - 6 a : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.84289541153501969768272794349819895677 \)
Period: \( 12.569687648774982149665383871851493932 \)
Tamagawa product: \( 9 \)  =  \(3\cdot3\)
Torsion order: \(2\)
Leading coefficient: \( 2.38385970980569 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((1/2a^3-2a)\) \(4\) \(3\) \(IV\) Additive \(1\) \(2\) \(4\) \(0\)
\((-a^2+3)\) \(25\) \(3\) \(I_{3}\) Split multiplicative \(-1\) \(1\) \(3\) \(3\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B.1.2

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3, 4, 6 and 12.
Its isogeny class 400.1-a consists of curves linked by isogenies of degrees dividing 12.

Base change

This elliptic curve is a \(\Q\)-curve. It is the base change of the following 2 elliptic curves:

Base field Curve
\(\Q(\sqrt{5}) \) 2.2.5.1-80.1-a8
\(\Q(\sqrt{5}) \) a curve with conductor norm 20480 (not in the database)