Properties

Label 4.4.13888.1-28.1-a2
Base field 4.4.13888.1
Conductor norm \( 28 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.13888.1

Generator \(a\), with minimal polynomial \( x^{4} - 2 x^{3} - 7 x^{2} + 6 x + 9 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([9, 6, -7, -2, 1]))
 
gp: K = nfinit(Polrev([9, 6, -7, -2, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![9, 6, -7, -2, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{2}-4\right){x}{y}+\left(\frac{1}{3}a^{3}-\frac{2}{3}a^{2}-\frac{1}{3}a+2\right){y}={x}^{3}+\left(-\frac{1}{3}a^{3}-\frac{1}{3}a^{2}+\frac{7}{3}a+4\right){x}^{2}+\left(\frac{65}{3}a^{3}-\frac{259}{3}a^{2}-\frac{311}{3}a+269\right){x}-\frac{46}{3}a^{3}-\frac{166}{3}a^{2}-\frac{524}{3}a-280\)
sage: E = EllipticCurve([K([-4,0,1,0]),K([4,7/3,-1/3,-1/3]),K([2,-1/3,-2/3,1/3]),K([269,-311/3,-259/3,65/3]),K([-280,-524/3,-166/3,-46/3])])
 
gp: E = ellinit([Polrev([-4,0,1,0]),Polrev([4,7/3,-1/3,-1/3]),Polrev([2,-1/3,-2/3,1/3]),Polrev([269,-311/3,-259/3,65/3]),Polrev([-280,-524/3,-166/3,-46/3])], K);
 
magma: E := EllipticCurve([K![-4,0,1,0],K![4,7/3,-1/3,-1/3],K![2,-1/3,-2/3,1/3],K![269,-311/3,-259/3,65/3],K![-280,-524/3,-166/3,-46/3]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-a^2+a+5)\) = \((1/3a^3-2/3a^2-4/3a+1)\cdot(1/3a^3-2/3a^2-7/3a+1)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 28 \) = \(4\cdot7\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-8/3a^3+4/3a^2+68/3a+12)\) = \((1/3a^3-2/3a^2-4/3a+1)^{5}\cdot(1/3a^3-2/3a^2-7/3a+1)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -7168 \) = \(-4^{5}\cdot7\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{202187801615606581240}{7} a^{3} + \frac{2132341421075931165969}{56} a^{2} - \frac{4246781510624005040425}{56} a - \frac{4387050770704462768903}{56} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-\frac{1511}{98} a^{3} + \frac{3135}{98} a^{2} + \frac{2726}{49} a + \frac{1461}{98} : -\frac{16117}{4116} a^{3} + \frac{319325}{1029} a^{2} - \frac{1464073}{2058} a - \frac{1201177}{1372} : 1\right)$
Height \(3.9509304655093517127075385164850877799\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 3.9509304655093517127075385164850877799 \)
Period: \( 0.96331394842300898980927001016208368094 \)
Tamagawa product: \( 1 \)  =  \(1\cdot1\)
Torsion order: \(1\)
Leading coefficient: \( 3.22958992221777 \)
Analytic order of Ш: \( 25 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((1/3a^3-2/3a^2-4/3a+1)\) \(4\) \(1\) \(I_{5}\) Non-split multiplicative \(1\) \(1\) \(5\) \(5\)
\((1/3a^3-2/3a^2-7/3a+1)\) \(7\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(5\) 5B.1.2

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 5.
Its isogeny class 28.1-a consists of curves linked by isogenies of degree 5.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.