Properties

Label 4.4.1125.1-961.7-b8
Base field \(\Q(\zeta_{15})^+\)
Conductor norm \( 961 \)
CM yes (\(-60\))
Base change no
Q-curve yes
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\zeta_{15})^+\)

Generator \(a\), with minimal polynomial \( x^{4} - x^{3} - 4 x^{2} + 4 x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 4, -4, -1, 1]))
 
gp: K = nfinit(Polrev([1, 4, -4, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 4, -4, -1, 1]);
 

Weierstrass equation

\({y}^2+{x}{y}+{y}={x}^{3}+\left(a^{3}+a^{2}-4a-1\right){x}^{2}+\left(-1158278a^{3}-958000a^{2}+2882755a+633942\right){x}-931622486a^{3}-770536492a^{2}+2318649718a+509893883\)
sage: E = EllipticCurve([K([1,0,0,0]),K([-1,-4,1,1]),K([1,0,0,0]),K([633942,2882755,-958000,-1158278]),K([509893883,2318649718,-770536492,-931622486])])
 
gp: E = ellinit([Polrev([1,0,0,0]),Polrev([-1,-4,1,1]),Polrev([1,0,0,0]),Polrev([633942,2882755,-958000,-1158278]),Polrev([509893883,2318649718,-770536492,-931622486])], K);
 
magma: E := EllipticCurve([K![1,0,0,0],K![-1,-4,1,1],K![1,0,0,0],K![633942,2882755,-958000,-1158278],K![509893883,2318649718,-770536492,-931622486]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^2-8)\) = \((a^3+2a^2-3a-3)^{2}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 961 \) = \(31^{2}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-92a^3+a^2+417a-19)\) = \((a^3+2a^2-3a-3)^{6}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 887503681 \) = \(31^{6}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( 16554983445 a^{3} - 49664950335 a + 26786530035 \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z[\sqrt{-15}]\) (potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $N(\mathrm{U}(1))$

Mordell-Weil group

Rank: \(1\)
Generator $\left(901 a^{3} + 742 a^{2} - 2243 a - 483 : 37766 a^{3} + 31250 a^{2} - 93984 a - 20706 : 1\right)$
Height \(1.6682589384299263658843504452742330427\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-321 a^{3} - 265 a^{2} + 800 a + \frac{699}{4} : \frac{321}{2} a^{3} + \frac{265}{2} a^{2} - 400 a - \frac{703}{8} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 1.6682589384299263658843504452742330427 \)
Period: \( 25.883625556809891235051060669540833147 \)
Tamagawa product: \( 2 \)
Torsion order: \(2\)
Leading coefficient: \( 2.57479290305553 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^3+2a^2-3a-3)\) \(31\) \(2\) \(I_0^{*}\) Additive \(-1\) \(2\) \(6\) \(0\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(5\) 5B.4.1[2]

For all other primes \(p\), the image is a Borel subgroup if \(p\in \{ 2, 3\}\), the normalizer of a split Cartan subgroup if \(\left(\frac{ -15 }{p}\right)=+1\) or the normalizer of a nonsplit Cartan subgroup if \(\left(\frac{ -15 }{p}\right)=-1\).

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3, 5, 6, 10, 15 and 30.
Its isogeny class 961.7-b consists of curves linked by isogenies of degrees dividing 30.

Base change

This elliptic curve is a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.