Base field \(\Q(\zeta_{15})^+\)
Generator \(a\), with minimal polynomial \( x^{4} - x^{3} - 4 x^{2} + 4 x + 1 \); class number \(1\).
sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 4, -4, -1, 1]))
gp: K = nfinit(Polrev([1, 4, -4, -1, 1]));
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 4, -4, -1, 1]);
Weierstrass equation
sage: E = EllipticCurve([K([-2,1,1,0]),K([-2,4,1,-1]),K([0,-2,0,1]),K([0,-6,1,2]),K([-2,-9,1,3])])
gp: E = ellinit([Polrev([-2,1,1,0]),Polrev([-2,4,1,-1]),Polrev([0,-2,0,1]),Polrev([0,-6,1,2]),Polrev([-2,-9,1,3])], K);
magma: E := EllipticCurve([K![-2,1,1,0],K![-2,4,1,-1],K![0,-2,0,1],K![0,-6,1,2],K![-2,-9,1,3]]);
This is a global minimal model.
sage: E.is_global_minimal_model()
Invariants
Conductor: | \((-2a^3+a^2+7a-2)\) | = | \((-2a^3+a^2+7a-2)\) |
sage: E.conductor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
| |||
Conductor norm: | \( 89 \) | = | \(89\) |
sage: E.conductor().norm()
gp: idealnorm(ellglobalred(E)[1])
magma: Norm(Conductor(E));
| |||
Discriminant: | \((2a^3-a^2-7a+2)\) | = | \((-2a^3+a^2+7a-2)\) |
sage: E.discriminant()
gp: E.disc
magma: Discriminant(E);
| |||
Discriminant norm: | \( -89 \) | = | \(-89\) |
sage: E.discriminant().norm()
gp: norm(E.disc)
magma: Norm(Discriminant(E));
| |||
j-invariant: | \( -\frac{79441}{89} a^{3} - \frac{10986}{89} a^{2} + \frac{246723}{89} a + \frac{51251}{89} \) | ||
sage: E.j_invariant()
gp: E.j
magma: jInvariant(E);
| |||
Endomorphism ring: | \(\Z\) | ||
Geometric endomorphism ring: | \(\Z\) | (no potential complex multiplication) | |
sage: E.has_cm(), E.cm_discriminant()
magma: HasComplexMultiplication(E);
| |||
Sato-Tate group: | $\mathrm{SU}(2)$ |
Mordell-Weil group
Rank: | \(1\) |
Generator | $\left(a^{3} - a^{2} - 4 a + 3 : a^{3} - 2 a^{2} - 4 a + 9 : 1\right)$ |
Height | \(0.0064140980211483264685894835297725584755\) |
Torsion structure: | trivial |
sage: T = E.torsion_subgroup(); T.invariants()
gp: T = elltors(E); T[2]
magma: T,piT := TorsionSubgroup(E); Invariants(T);
|
BSD invariants
Analytic rank: | \( 1 \) | ||
sage: E.rank()
magma: Rank(E);
|
|||
Mordell-Weil rank: | \(1\) | ||
Regulator: | \( 0.0064140980211483264685894835297725584755 \) | ||
Period: | \( 1474.0844125343780183372939428680433091 \) | ||
Tamagawa product: | \( 1 \) | ||
Torsion order: | \(1\) | ||
Leading coefficient: | \( 1.12756523308851 \) | ||
Analytic order of Ш: | \( 1 \) (rounded) |
Local data at primes of bad reduction
sage: E.local_data()
magma: LocalInformation(E);
prime | Norm | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord(\(\mathfrak{N}\)) | ord(\(\mathfrak{D}\)) | ord\((j)_{-}\) |
---|---|---|---|---|---|---|---|---|
\((-2a^3+a^2+7a-2)\) | \(89\) | \(1\) | \(I_{1}\) | Split multiplicative | \(-1\) | \(1\) | \(1\) | \(1\) |
Galois Representations
The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.
prime | Image of Galois Representation |
---|---|
\(3\) | 3B.1.2 |
Isogenies and isogeny class
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
3.
Its isogeny class
89.3-b
consists of curves linked by isogenies of
degree 3.
Base change
This elliptic curve is not a \(\Q\)-curve.
It is not the base change of an elliptic curve defined over any subfield.