Properties

Label 4.4.1125.1-89.3-b2
Base field \(\Q(\zeta_{15})^+\)
Conductor norm \( 89 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\zeta_{15})^+\)

Generator \(a\), with minimal polynomial \( x^{4} - x^{3} - 4 x^{2} + 4 x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 4, -4, -1, 1]))
 
gp: K = nfinit(Polrev([1, 4, -4, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 4, -4, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{2}+a-2\right){x}{y}+\left(a^{3}-2a\right){y}={x}^{3}+\left(-a^{3}+a^{2}+4a-2\right){x}^{2}+\left(2a^{3}+a^{2}-6a\right){x}+3a^{3}+a^{2}-9a-2\)
sage: E = EllipticCurve([K([-2,1,1,0]),K([-2,4,1,-1]),K([0,-2,0,1]),K([0,-6,1,2]),K([-2,-9,1,3])])
 
gp: E = ellinit([Polrev([-2,1,1,0]),Polrev([-2,4,1,-1]),Polrev([0,-2,0,1]),Polrev([0,-6,1,2]),Polrev([-2,-9,1,3])], K);
 
magma: E := EllipticCurve([K![-2,1,1,0],K![-2,4,1,-1],K![0,-2,0,1],K![0,-6,1,2],K![-2,-9,1,3]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-2a^3+a^2+7a-2)\) = \((-2a^3+a^2+7a-2)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 89 \) = \(89\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((2a^3-a^2-7a+2)\) = \((-2a^3+a^2+7a-2)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -89 \) = \(-89\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{79441}{89} a^{3} - \frac{10986}{89} a^{2} + \frac{246723}{89} a + \frac{51251}{89} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(a^{3} - a^{2} - 4 a + 3 : a^{3} - 2 a^{2} - 4 a + 9 : 1\right)$
Height \(0.0064140980211483264685894835297725584755\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.0064140980211483264685894835297725584755 \)
Period: \( 1474.0844125343780183372939428680433091 \)
Tamagawa product: \( 1 \)
Torsion order: \(1\)
Leading coefficient: \( 1.12756523308851 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-2a^3+a^2+7a-2)\) \(89\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3B.1.2

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3.
Its isogeny class 89.3-b consists of curves linked by isogenies of degree 3.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.