Label
Class
Class size
Class degree
Base field
Field degree
Field signature
Conductor
Conductor norm
Discriminant norm
Root analytic conductor
Bad primes
Rank
Torsion
CM
CM
Sato-Tate
$\Q$-curve
Base change
Semistable
Potentially good
Nonmax $\ell$
mod-$\ell$ images
$Ш_{\textrm{an}}$
Tamagawa
Regulator
Period
Leading coeff
j-invariant
Weierstrass coefficients
Weierstrass equation
89.3-a1
89.3-a
$2$
$3$
\(\Q(\zeta_{15})^+\)
$4$
$[4, 0]$
89.3
\( 89 \)
\( -89 \)
$5.25277$
$(-2a^3+a^2+7a-2)$
0
$\Z/3\Z$
$\textsf{no}$
$\mathrm{SU}(2)$
✓
$3$
3B.1.1
$1$
\( 1 \)
$1$
$377.6442939$
1.251019722
\( -\frac{79441}{89} a^{3} - \frac{10986}{89} a^{2} + \frac{246723}{89} a + \frac{51251}{89} \)
\( \bigl[a^{2} - 2\) , \( a^{3} + a^{2} - 2 a - 3\) , \( a^{3} - 2 a + 1\) , \( -a + 2\) , \( -a^{3} - a^{2} + 3 a\bigr] \)
${y}^2+\left(a^{2}-2\right){x}{y}+\left(a^{3}-2a+1\right){y}={x}^{3}+\left(a^{3}+a^{2}-2a-3\right){x}^{2}+\left(-a+2\right){x}-a^{3}-a^{2}+3a$
89.3-a2
89.3-a
$2$
$3$
\(\Q(\zeta_{15})^+\)
$4$
$[4, 0]$
89.3
\( 89 \)
\( - 89^{3} \)
$5.25277$
$(-2a^3+a^2+7a-2)$
0
$\mathsf{trivial}$
$\textsf{no}$
$\mathrm{SU}(2)$
✓
$3$
3B.1.2
$9$
\( 1 \)
$1$
$4.662275233$
1.251019722
\( -\frac{83630646617237}{704969} a^{3} - \frac{59371662388246}{704969} a^{2} + \frac{221021181736913}{704969} a + \frac{33436542823570}{704969} \)
\( \bigl[a^{2} - 2\) , \( a^{3} + a^{2} - 2 a - 3\) , \( a^{3} - 2 a + 1\) , \( -30 a^{3} - 25 a^{2} + 74 a + 12\) , \( -169 a^{3} - 140 a^{2} + 421 a + 89\bigr] \)
${y}^2+\left(a^{2}-2\right){x}{y}+\left(a^{3}-2a+1\right){y}={x}^{3}+\left(a^{3}+a^{2}-2a-3\right){x}^{2}+\left(-30a^{3}-25a^{2}+74a+12\right){x}-169a^{3}-140a^{2}+421a+89$
89.3-b1
89.3-b
$2$
$3$
\(\Q(\zeta_{15})^+\)
$4$
$[4, 0]$
89.3
\( 89 \)
\( - 89^{3} \)
$5.25277$
$(-2a^3+a^2+7a-2)$
$1$
$\Z/3\Z$
$\textsf{no}$
$\mathrm{SU}(2)$
✓
$3$
3B.1.1
$1$
\( 3 \)
$0.019242294$
$1474.084412$
1.127565233
\( -\frac{83630646617237}{704969} a^{3} - \frac{59371662388246}{704969} a^{2} + \frac{221021181736913}{704969} a + \frac{33436542823570}{704969} \)
\( \bigl[a^{2} + a - 2\) , \( -a^{3} + a^{2} + 4 a - 2\) , \( a^{3} - 2 a\) , \( 82 a^{3} + 31 a^{2} - 291 a - 75\) , \( -396 a^{3} - 143 a^{2} + 1404 a + 326\bigr] \)
${y}^2+\left(a^{2}+a-2\right){x}{y}+\left(a^{3}-2a\right){y}={x}^{3}+\left(-a^{3}+a^{2}+4a-2\right){x}^{2}+\left(82a^{3}+31a^{2}-291a-75\right){x}-396a^{3}-143a^{2}+1404a+326$
89.3-b2
89.3-b
$2$
$3$
\(\Q(\zeta_{15})^+\)
$4$
$[4, 0]$
89.3
\( 89 \)
\( -89 \)
$5.25277$
$(-2a^3+a^2+7a-2)$
$1$
$\mathsf{trivial}$
$\textsf{no}$
$\mathrm{SU}(2)$
✓
$3$
3B.1.2
$1$
\( 1 \)
$0.006414098$
$1474.084412$
1.127565233
\( -\frac{79441}{89} a^{3} - \frac{10986}{89} a^{2} + \frac{246723}{89} a + \frac{51251}{89} \)
\( \bigl[a^{2} + a - 2\) , \( -a^{3} + a^{2} + 4 a - 2\) , \( a^{3} - 2 a\) , \( 2 a^{3} + a^{2} - 6 a\) , \( 3 a^{3} + a^{2} - 9 a - 2\bigr] \)
${y}^2+\left(a^{2}+a-2\right){x}{y}+\left(a^{3}-2a\right){y}={x}^{3}+\left(-a^{3}+a^{2}+4a-2\right){x}^{2}+\left(2a^{3}+a^{2}-6a\right){x}+3a^{3}+a^{2}-9a-2$
Download
displayed columns for
results
to
Text
Pari/GP
SageMath
Magma
Oscar
CSV
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.