Properties

Label 4.4.1125.1-841.7-b1
Base field \(\Q(\zeta_{15})^+\)
Conductor norm \( 841 \)
CM yes (\(-3\))
Base change no
Q-curve yes
Torsion order \( 1 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\zeta_{15})^+\)

Generator \(a\), with minimal polynomial \( x^{4} - x^{3} - 4 x^{2} + 4 x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 4, -4, -1, 1]))
 
gp: K = nfinit(Polrev([1, 4, -4, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 4, -4, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{3}-2a+1\right){y}={x}^{3}+\left(a^{3}+a^{2}-4a-3\right){x}^{2}+\left(-2a^{3}-a^{2}+7a+3\right){x}+18371836a^{3}+15195215a^{2}-45724292a-10055225\)
sage: E = EllipticCurve([K([0,0,0,0]),K([-3,-4,1,1]),K([1,-2,0,1]),K([3,7,-1,-2]),K([-10055225,-45724292,15195215,18371836])])
 
gp: E = ellinit([Polrev([0,0,0,0]),Polrev([-3,-4,1,1]),Polrev([1,-2,0,1]),Polrev([3,7,-1,-2]),Polrev([-10055225,-45724292,15195215,18371836])], K);
 
magma: E := EllipticCurve([K![0,0,0,0],K![-3,-4,1,1],K![1,-2,0,1],K![3,7,-1,-2],K![-10055225,-45724292,15195215,18371836]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-a^3+2a^2+7a-4)\) = \((-a^3-a^2+2a+3)^{2}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 841 \) = \(29^{2}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((1123a^3+643a^2-4113a-5420)\) = \((-a^3-a^2+2a+3)^{10}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 420707233300201 \) = \(29^{10}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( 0 \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z[(1+\sqrt{-3})/2]\) (potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $N(\mathrm{U}(1))$

Mordell-Weil group

Rank: \(0\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 47.688210905050606705902195461560984461 \)
Tamagawa product: \( 1 \)
Torsion order: \(1\)
Leading coefficient: \( 1.42178775078720 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a^3-a^2+2a+3)\) \(29\) \(1\) \(II^{*}\) Additive \(1\) \(2\) \(10\) \(0\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) .

The image is a Borel subgroup if \(p=3\), the normalizer of a split Cartan subgroup if \(\left(\frac{ -3 }{p}\right)=+1\) or the normalizer of a nonsplit Cartan subgroup if \(\left(\frac{ -3 }{p}\right)=-1\).

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3.
Its isogeny class 841.7-b consists of curves linked by isogenies of degree 3.

Base change

This elliptic curve is a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.