Base field \(\Q(\zeta_{15})^+\)
Generator \(a\), with minimal polynomial \( x^{4} - x^{3} - 4 x^{2} + 4 x + 1 \); class number \(1\).
sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 4, -4, -1, 1]))
gp: K = nfinit(Pol(Vecrev([1, 4, -4, -1, 1])));
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 4, -4, -1, 1]);
Weierstrass equation
sage: E = EllipticCurve([K([1,0,0,0]),K([1,0,0,0]),K([1,0,0,0]),K([-5,0,0,0]),K([2,0,0,0])])
gp: E = ellinit([Pol(Vecrev([1,0,0,0])),Pol(Vecrev([1,0,0,0])),Pol(Vecrev([1,0,0,0])),Pol(Vecrev([-5,0,0,0])),Pol(Vecrev([2,0,0,0]))], K);
magma: E := EllipticCurve([K![1,0,0,0],K![1,0,0,0],K![1,0,0,0],K![-5,0,0,0],K![2,0,0,0]]);
This is a global minimal model.
sage: E.is_global_minimal_model()
Invariants
Conductor: | \((a^{3} - 5 a + 1)\) | = | \( \left(-a^{3} + a^{2} + 3 a - 2\right) \cdot \left(-a - 1\right) \) |
sage: E.conductor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
| |||
Conductor norm: | \( 45 \) | = | \( 5 \cdot 9 \) |
sage: E.conductor().norm()
gp: idealnorm(ellglobalred(E)[1])
magma: Norm(Conductor(E));
| |||
Discriminant: | \((225)\) | = | \( \left(-a^{3} + a^{2} + 3 a - 2\right)^{4} \cdot \left(-a - 1\right)^{8} \) |
sage: E.discriminant()
gp: E.disc
magma: Discriminant(E);
| |||
Discriminant norm: | \( 2562890625 \) | = | \( 5^{8} \cdot 9^{4} \) |
sage: E.discriminant().norm()
gp: norm(E.disc)
magma: Norm(Discriminant(E));
| |||
j-invariant: | \( \frac{13997521}{225} \) | ||
sage: E.j_invariant()
gp: E.j
magma: jInvariant(E);
| |||
Endomorphism ring: | \(\Z\) | ||
Geometric endomorphism ring: | \(\Z\) | (no potential complex multiplication) | |
sage: E.has_cm(), E.cm_discriminant()
magma: HasComplexMultiplication(E);
| |||
Sato-Tate group: | $\mathrm{SU}(2)$ |
Mordell-Weil group
Rank: | \(0\) | |
Torsion structure: | \(\Z/2\Z\times\Z/16\Z\) | |
sage: T = E.torsion_subgroup(); T.invariants()
gp: T = elltors(E); T[2]
magma: T,piT := TorsionSubgroup(E); Invariants(T);
| ||
Torsion generators: | $\left(9 a^{3} + 7 a^{2} - 23 a - 4 : 44 a^{3} + 37 a^{2} - 108 a - 25 : 1\right)$ | $\left(\frac{3}{4} : -\frac{7}{8} : 1\right)$ |
sage: T.gens()
gp: T[3]
magma: [piT(P) : P in Generators(T)];
|
BSD invariants
Analytic rank: | \( 0 \) | ||
sage: E.rank()
magma: Rank(E);
|
|||
Mordell-Weil rank: | \(0\) | ||
Regulator: | \( 1 \) | ||
Period: | \( 985.145157251356 \) | ||
Tamagawa product: | \( 32 \) = \(2^{3}\cdot2^{2}\) | ||
Torsion order: | \(32\) | ||
Leading coefficient: | \(0.917854808049480\) | ||
Analytic order of Ш: | \( 1 \) (rounded) |
Local data at primes of bad reduction
sage: E.local_data()
magma: LocalInformation(E);
prime | Norm | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord(\(\mathfrak{N}\)) | ord(\(\mathfrak{D}\)) | ord\((j)_{-}\) |
---|---|---|---|---|---|---|---|---|
\( \left(-a - 1\right) \) | \(5\) | \(8\) | \(I_{8}\) | Split multiplicative | \(-1\) | \(1\) | \(8\) | \(8\) |
\( \left(-a^{3} + a^{2} + 3 a - 2\right) \) | \(9\) | \(4\) | \(I_{4}\) | Split multiplicative | \(-1\) | \(1\) | \(4\) | \(4\) |
Galois Representations
The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.
prime | Image of Galois Representation |
---|---|
\(2\) | 2Cs |
Isogenies and isogeny class
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
2, 4, 8 and 16.
Its isogeny class
45.1-b
consists of curves linked by isogenies of
degrees dividing 32.
Base change
This curve is the base change of elliptic curves 15.a6, 75.b6, defined over \(\Q\), so it is also a \(\Q\)-curve.