Properties

Label 4.4.1125.1-45.1-a4
Base field \(\Q(\zeta_{15})^+\)
Conductor norm \( 45 \)
CM no
Base change yes
Q-curve yes
Torsion order \( 4 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\zeta_{15})^+\)

Generator \(a\), with minimal polynomial \( x^{4} - x^{3} - 4 x^{2} + 4 x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 4, -4, -1, 1]))
 
gp: K = nfinit(Polrev([1, 4, -4, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 4, -4, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{3}+a^{2}-2a-2\right){x}{y}+\left(a^{3}+a^{2}-2a-1\right){y}={x}^{3}+\left(-a^{3}+a^{2}+4a-3\right){x}^{2}+\left(10a^{3}-51a^{2}+40a+13\right){x}-49a^{3}+125a^{2}-65a-20\)
sage: E = EllipticCurve([K([-2,-2,1,1]),K([-3,4,1,-1]),K([-1,-2,1,1]),K([13,40,-51,10]),K([-20,-65,125,-49])])
 
gp: E = ellinit([Polrev([-2,-2,1,1]),Polrev([-3,4,1,-1]),Polrev([-1,-2,1,1]),Polrev([13,40,-51,10]),Polrev([-20,-65,125,-49])], K);
 
magma: E := EllipticCurve([K![-2,-2,1,1],K![-3,4,1,-1],K![-1,-2,1,1],K![13,40,-51,10],K![-20,-65,125,-49]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^3-5a+1)\) = \((-a-1)\cdot(-a^3+a^2+3a-2)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 45 \) = \(5\cdot9\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((50625)\) = \((-a-1)^{16}\cdot(-a^3+a^2+3a-2)^{8}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 6568408355712890625 \) = \(5^{16}\cdot9^{8}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{111284641}{50625} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\oplus\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generators: $\left(-a + 1 : -a + 1 : 1\right)$ $\left(\frac{9}{4} a^{2} - \frac{13}{4} a + 1 : -\frac{9}{4} a^{3} + \frac{19}{8} a + \frac{17}{8} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 103.87598599906852702505624006270759772 \)
Tamagawa product: \( 4 \)  =  \(2\cdot2\)
Torsion order: \(4\)
Leading coefficient: \( 0.774245886412445 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a-1)\) \(5\) \(2\) \(I_{16}\) Non-split multiplicative \(1\) \(1\) \(16\) \(16\)
\((-a^3+a^2+3a-2)\) \(9\) \(2\) \(I_{8}\) Non-split multiplicative \(1\) \(1\) \(8\) \(8\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2Cs

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 4 and 8.
Its isogeny class 45.1-a consists of curves linked by isogenies of degrees dividing 32.

Base change

This elliptic curve is a \(\Q\)-curve. It is the base change of the following 4 elliptic curves:

Base field Curve
\(\Q\) 45.a5
\(\Q\) 225.b5
\(\Q(\sqrt{5}) \) 2.2.5.1-225.1-b5
\(\Q(\sqrt{5}) \) 2.2.5.1-405.1-a5