Properties

Label 4.4.1125.1-31.2-b4
Base field \(\Q(\zeta_{15})^+\)
Conductor norm \( 31 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\zeta_{15})^+\)

Generator \(a\), with minimal polynomial \( x^{4} - x^{3} - 4 x^{2} + 4 x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 4, -4, -1, 1]))
 
gp: K = nfinit(Polrev([1, 4, -4, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 4, -4, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{3}-2a+1\right){x}{y}+\left(a^{2}-1\right){y}={x}^{3}+\left(a^{3}-a^{2}-2a+2\right){x}^{2}+\left(36a^{3}+16a^{2}-135a-18\right){x}+78a^{3}-11a^{2}-319a-36\)
sage: E = EllipticCurve([K([1,-2,0,1]),K([2,-2,-1,1]),K([-1,0,1,0]),K([-18,-135,16,36]),K([-36,-319,-11,78])])
 
gp: E = ellinit([Polrev([1,-2,0,1]),Polrev([2,-2,-1,1]),Polrev([-1,0,1,0]),Polrev([-18,-135,16,36]),Polrev([-36,-319,-11,78])], K);
 
magma: E := EllipticCurve([K![1,-2,0,1],K![2,-2,-1,1],K![-1,0,1,0],K![-18,-135,16,36],K![-36,-319,-11,78]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-a^3+5a-2)\) = \((-a^3+5a-2)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 31 \) = \(31\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((402355a^3-1238a^2-1927005a+243772)\) = \((-a^3+5a-2)^{16}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 727423121747185263828481 \) = \(31^{16}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{154534453074689854099149438193}{727423121747185263828481} a^{3} + \frac{52426907107682729263745202448}{727423121747185263828481} a^{2} - \frac{548494138857606744358415989700}{727423121747185263828481} a - \frac{115417448688070173417441163369}{727423121747185263828481} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-\frac{15}{4} a^{3} + \frac{1}{4} a^{2} + \frac{57}{4} a : -\frac{7}{4} a^{2} - \frac{19}{8} a + \frac{17}{8} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 2.9594280635148344424733900784705493409 \)
Tamagawa product: \( 2 \)
Torsion order: \(2\)
Leading coefficient: \( 0.705864781284238 \)
Analytic order of Ш: \( 16 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a^3+5a-2)\) \(31\) \(2\) \(I_{16}\) Non-split multiplicative \(1\) \(1\) \(16\) \(16\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 4 and 8.
Its isogeny class 31.2-b consists of curves linked by isogenies of degrees dividing 8.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.