Properties

Label 4.4.1125.1-145.1-e3
Base field \(\Q(\zeta_{15})^+\)
Conductor norm \( 145 \)
CM no
Base change no
Q-curve no
Torsion order \( 4 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\zeta_{15})^+\)

Generator \(a\), with minimal polynomial \( x^{4} - x^{3} - 4 x^{2} + 4 x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 4, -4, -1, 1]))
 
gp: K = nfinit(Polrev([1, 4, -4, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 4, -4, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{2}-1\right){x}{y}+\left(a^{2}-2\right){y}={x}^{3}+\left(a^{3}+a^{2}-4a-2\right){x}^{2}+\left(-13a^{3}-37a^{2}-44a-39\right){x}-1144a^{3}-675a^{2}+3401a+673\)
sage: E = EllipticCurve([K([-1,0,1,0]),K([-2,-4,1,1]),K([-2,0,1,0]),K([-39,-44,-37,-13]),K([673,3401,-675,-1144])])
 
gp: E = ellinit([Polrev([-1,0,1,0]),Polrev([-2,-4,1,1]),Polrev([-2,0,1,0]),Polrev([-39,-44,-37,-13]),Polrev([673,3401,-675,-1144])], K);
 
magma: E := EllipticCurve([K![-1,0,1,0],K![-2,-4,1,1],K![-2,0,1,0],K![-39,-44,-37,-13],K![673,3401,-675,-1144]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((4a^3-13a+1)\) = \((-a-1)\cdot(-a^3-a^2+2a+3)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 145 \) = \(5\cdot29\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-7a^3+31a-1)\) = \((-a-1)^{2}\cdot(-a^3-a^2+2a+3)^{2}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 21025 \) = \(5^{2}\cdot29^{2}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{7687159294137043}{4205} a^{3} - \frac{2664464498192138}{4205} a^{2} + \frac{27260504930559828}{4205} a + \frac{5973600272646728}{4205} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\oplus\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generators: $\left(11 a^{3} + 7 a^{2} - 33 a - 10 : -9 a^{3} - 6 a^{2} + 25 a + 5 : 1\right)$ $\left(-5 a^{3} - 5 a^{2} + 15 a + 10 : 5 a^{3} + 2 a^{2} - 15 a + 1 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 160.12591169788640671327014843992486837 \)
Tamagawa product: \( 4 \)  =  \(2\cdot2\)
Torsion order: \(4\)
Leading coefficient: \( 1.19350807838534 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a-1)\) \(5\) \(2\) \(I_{2}\) Split multiplicative \(-1\) \(1\) \(2\) \(2\)
\((-a^3-a^2+2a+3)\) \(29\) \(2\) \(I_{2}\) Split multiplicative \(-1\) \(1\) \(2\) \(2\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2Cs

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2.
Its isogeny class 145.1-e consists of curves linked by isogenies of degrees dividing 4.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.