Properties

Label 4.4.1125.1-145.1-d3
Base field \(\Q(\zeta_{15})^+\)
Conductor norm \( 145 \)
CM no
Base change no
Q-curve no
Torsion order \( 14 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\zeta_{15})^+\)

Generator \(a\), with minimal polynomial \( x^{4} - x^{3} - 4 x^{2} + 4 x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 4, -4, -1, 1]))
 
gp: K = nfinit(Polrev([1, 4, -4, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 4, -4, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a+1\right){x}{y}+\left(a^{3}+a^{2}-3a-1\right){y}={x}^{3}+\left(a^{2}+a-2\right){x}^{2}+\left(a^{3}-a+1\right){x}+a^{3}+2a^{2}-4a-1\)
sage: E = EllipticCurve([K([1,1,0,0]),K([-2,1,1,0]),K([-1,-3,1,1]),K([1,-1,0,1]),K([-1,-4,2,1])])
 
gp: E = ellinit([Polrev([1,1,0,0]),Polrev([-2,1,1,0]),Polrev([-1,-3,1,1]),Polrev([1,-1,0,1]),Polrev([-1,-4,2,1])], K);
 
magma: E := EllipticCurve([K![1,1,0,0],K![-2,1,1,0],K![-1,-3,1,1],K![1,-1,0,1],K![-1,-4,2,1]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((4a^3-13a+1)\) = \((-a-1)\cdot(-a^3-a^2+2a+3)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 145 \) = \(5\cdot29\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-40a^3+5a^2+130a-40)\) = \((-a-1)^{7}\cdot(-a^3-a^2+2a+3)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 2265625 \) = \(5^{7}\cdot29\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{20885181}{725} a^{3} - \frac{26043186}{725} a^{2} - \frac{78162292}{725} a + \frac{20490856}{145} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/14\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-a : -a^{3} + 3 a + 1 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 1003.1162302038611365004072727086735381 \)
Tamagawa product: \( 7 \)  =  \(7\cdot1\)
Torsion order: \(14\)
Leading coefficient: \( 1.06811241908055 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a-1)\) \(5\) \(7\) \(I_{7}\) Split multiplicative \(-1\) \(1\) \(7\) \(7\)
\((-a^3-a^2+2a+3)\) \(29\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(7\) 7B.1.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 7 and 14.
Its isogeny class 145.1-d consists of curves linked by isogenies of degrees dividing 14.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.