Properties

Label 4.4.1125.1-144.1-b2
Base field \(\Q(\zeta_{15})^+\)
Conductor norm \( 144 \)
CM no
Base change yes
Q-curve yes
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\zeta_{15})^+\)

Generator \(a\), with minimal polynomial \( x^{4} - x^{3} - 4 x^{2} + 4 x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 4, -4, -1, 1]))
 
gp: K = nfinit(Polrev([1, 4, -4, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 4, -4, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{2}-1\right){x}{y}+\left(a^{3}-3a+1\right){y}={x}^{3}-{x}^{2}+\left(-128675a^{3}-106484a^{2}+320114a+70383\right){x}-34429829a^{3}-28477022a^{2}+85689050a+18843868\)
sage: E = EllipticCurve([K([-1,0,1,0]),K([-1,0,0,0]),K([1,-3,0,1]),K([70383,320114,-106484,-128675]),K([18843868,85689050,-28477022,-34429829])])
 
gp: E = ellinit([Polrev([-1,0,1,0]),Polrev([-1,0,0,0]),Polrev([1,-3,0,1]),Polrev([70383,320114,-106484,-128675]),Polrev([18843868,85689050,-28477022,-34429829])], K);
 
magma: E := EllipticCurve([K![-1,0,1,0],K![-1,0,0,0],K![1,-3,0,1],K![70383,320114,-106484,-128675],K![18843868,85689050,-28477022,-34429829]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-2a^3+2a^2+6a-4)\) = \((-a^3+a^2+3a-2)\cdot(2)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 144 \) = \(9\cdot16\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((1889568)\) = \((-a^3+a^2+3a-2)^{20}\cdot(2)^{5}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 12748236216396078174437376 \) = \(9^{20}\cdot16^{5}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{502270291349}{1889568} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(\frac{1392}{5} a^{3} + \frac{1167}{5} a^{2} - \frac{3412}{5} a - \frac{717}{5} : \frac{31384}{5} a^{3} + \frac{26067}{5} a^{2} - \frac{77897}{5} a - 3437 : 1\right)$
Height \(1.3728099587454048453698178009257677689\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-\frac{393}{4} a^{3} - \frac{165}{2} a^{2} + 241 a + 51 : \frac{467}{4} a^{3} + \frac{393}{4} a^{2} - \frac{2309}{8} a - \frac{523}{8} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 1.3728099587454048453698178009257677689 \)
Period: \( 3.1399303719779948954928250029760338940 \)
Tamagawa product: \( 10 \)  =  \(2\cdot5\)
Torsion order: \(2\)
Leading coefficient: \( 1.28515105616729 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a^3+a^2+3a-2)\) \(9\) \(2\) \(I_{20}\) Non-split multiplicative \(1\) \(1\) \(20\) \(20\)
\((2)\) \(16\) \(5\) \(I_{5}\) Split multiplicative \(-1\) \(1\) \(5\) \(5\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(5\) 5B.1.4[2]

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 5 and 10.
Its isogeny class 144.1-b consists of curves linked by isogenies of degrees dividing 10.

Base change

This elliptic curve is a \(\Q\)-curve. It is the base change of the following 4 elliptic curves:

Base field Curve
\(\Q\) 450.f1
\(\Q\) 450.b1
\(\Q(\sqrt{5}) \) 2.2.5.1-36.1-a3
\(\Q(\sqrt{5}) \) a curve with conductor norm 8100 (not in the database)