Properties

Label 4.4.10512.1-4.1-c5
Base field 4.4.10512.1
Conductor norm \( 4 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.10512.1

Generator \(a\), with minimal polynomial \( x^{4} - 7 x^{2} - 6 x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -6, -7, 0, 1]))
 
gp: K = nfinit(Polrev([1, -6, -7, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -6, -7, 0, 1]);
 

Weierstrass equation

\({y}^2+{x}{y}+\left(a^{3}-a^{2}-5a-1\right){y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(2253a^{3}-4398a^{2}-7394a+1117\right){x}-114542a^{3}+212243a^{2}+407642a-62220\)
sage: E = EllipticCurve([K([1,0,0,0]),K([1,-1,0,0]),K([-1,-5,-1,1]),K([1117,-7394,-4398,2253]),K([-62220,407642,212243,-114542])])
 
gp: E = ellinit([Polrev([1,0,0,0]),Polrev([1,-1,0,0]),Polrev([-1,-5,-1,1]),Polrev([1117,-7394,-4398,2253]),Polrev([-62220,407642,212243,-114542])], K);
 
magma: E := EllipticCurve([K![1,0,0,0],K![1,-1,0,0],K![-1,-5,-1,1],K![1117,-7394,-4398,2253],K![-62220,407642,212243,-114542]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^3-a^2-5a)\) = \((a^3-a^2-5a)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 4 \) = \(4\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-4a^3+4a^2+20a)\) = \((a^3-a^2-5a)^{5}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 1024 \) = \(4^{5}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{46866366404774471142406706382678508925}{8} a^{3} - 837204824113363505263545929366924088 a^{2} + \frac{81776852534182441962754365040569479719}{2} a + \frac{327944882292203164723438266897992960759}{8} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 17.537229590165839300692384584836953606 \)
Tamagawa product: \( 1 \)
Torsion order: \(1\)
Leading coefficient: \( 1.53943310240620 \)
Analytic order of Ш: \( 9 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^3-a^2-5a)\) \(4\) \(1\) \(I_{5}\) Non-split multiplicative \(1\) \(1\) \(5\) \(5\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3B
\(5\) 5B.4.2

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3, 5, 9, 15 and 45.
Its isogeny class 4.1-c consists of curves linked by isogenies of degrees dividing 45.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.