Properties

Label 4.4.10512.1-4.1-b1
Base field 4.4.10512.1
Conductor norm \( 4 \)
CM no
Base change no
Q-curve no
Torsion order \( 3 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.10512.1

Generator \(a\), with minimal polynomial \( x^{4} - 7 x^{2} - 6 x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -6, -7, 0, 1]))
 
gp: K = nfinit(Polrev([1, -6, -7, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -6, -7, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{3}-6a-4\right){x}{y}+\left(a^{3}-a^{2}-5a-1\right){y}={x}^{3}+\left(a^{3}-6a-6\right){x}^{2}+\left(589a^{3}+153a^{2}-4324a-4830\right){x}-18547a^{3}-3626a^{2}+131800a+137439\)
sage: E = EllipticCurve([K([-4,-6,0,1]),K([-6,-6,0,1]),K([-1,-5,-1,1]),K([-4830,-4324,153,589]),K([137439,131800,-3626,-18547])])
 
gp: E = ellinit([Polrev([-4,-6,0,1]),Polrev([-6,-6,0,1]),Polrev([-1,-5,-1,1]),Polrev([-4830,-4324,153,589]),Polrev([137439,131800,-3626,-18547])], K);
 
magma: E := EllipticCurve([K![-4,-6,0,1],K![-6,-6,0,1],K![-1,-5,-1,1],K![-4830,-4324,153,589],K![137439,131800,-3626,-18547]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^3-a^2-5a)\) = \((a^3-a^2-5a)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 4 \) = \(4\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-4a^3+4a^2+20a)\) = \((a^3-a^2-5a)^{5}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 1024 \) = \(4^{5}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{46866366404774471142406706382678508925}{8} a^{3} - 837204824113363505263545929366924088 a^{2} + \frac{81776852534182441962754365040569479719}{2} a + \frac{327944882292203164723438266897992960759}{8} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-\frac{1018865163}{175256642} a^{3} + \frac{28337535}{87628321} a^{2} + \frac{7520340789}{175256642} a + \frac{3222895534}{87628321} : \frac{19209079236899}{3281154851524} a^{3} - \frac{94348329286071}{3281154851524} a^{2} - \frac{53561053813909}{3281154851524} a + \frac{177020755105829}{1640577425762} : 1\right)$
Height \(3.2274654342991159095460600047808694235\)
Torsion structure: \(\Z/3\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-\frac{20}{3} a^{3} + 3 a^{2} + 41 a + 37 : \frac{52}{9} a^{3} - \frac{89}{3} a^{2} + \frac{37}{9} a + 105 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 3.2274654342991159095460600047808694235 \)
Period: \( 28.659471545381856813935013773342846714 \)
Tamagawa product: \( 5 \)
Torsion order: \(3\)
Leading coefficient: \( 2.00481631535149 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^3-a^2-5a)\) \(4\) \(5\) \(I_{5}\) Split multiplicative \(-1\) \(1\) \(5\) \(5\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3B.1.1
\(5\) 5B.4.2

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3, 5, 9, 15 and 45.
Its isogeny class 4.1-b consists of curves linked by isogenies of degrees dividing 45.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.