Properties

Label 4.4.10512.1-4.1-a6
Base field 4.4.10512.1
Conductor norm \( 4 \)
CM no
Base change no
Q-curve no
Torsion order \( 3 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.10512.1

Generator \(a\), with minimal polynomial \( x^{4} - 7 x^{2} - 6 x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -6, -7, 0, 1]))
 
gp: K = nfinit(Polrev([1, -6, -7, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -6, -7, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{2}-a-4\right){x}{y}+\left(a^{3}-5a-5\right){y}={x}^{3}+a{x}^{2}+\left(689a^{3}-1428a^{2}-2067a+249\right){x}-23344a^{3}+45467a^{2}+77118a-12191\)
sage: E = EllipticCurve([K([-4,-1,1,0]),K([0,1,0,0]),K([-5,-5,0,1]),K([249,-2067,-1428,689]),K([-12191,77118,45467,-23344])])
 
gp: E = ellinit([Polrev([-4,-1,1,0]),Polrev([0,1,0,0]),Polrev([-5,-5,0,1]),Polrev([249,-2067,-1428,689]),Polrev([-12191,77118,45467,-23344])], K);
 
magma: E := EllipticCurve([K![-4,-1,1,0],K![0,1,0,0],K![-5,-5,0,1],K![249,-2067,-1428,689],K![-12191,77118,45467,-23344]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^3-a^2-5a)\) = \((a^3-a^2-5a)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 4 \) = \(4\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-4a^3+4a^2+20a)\) = \((a^3-a^2-5a)^{5}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 1024 \) = \(4^{5}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{15304699571819954343113231442255234483}{2} a^{3} + \frac{114782803284961196556967999586634839561}{8} a^{2} + \frac{213318413323541674723280700596219315409}{8} a - \frac{32650720809061143338121030438961921637}{8} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-\frac{341973733}{175256642} a^{3} + \frac{652081913}{87628321} a^{2} - \frac{891402951}{175256642} a - \frac{966431013}{175256642} : \frac{31632933959951}{3281154851524} a^{3} - \frac{61352331665895}{3281154851524} a^{2} - \frac{173003851044131}{3281154851524} a + \frac{1314978682013}{820288712881} : 1\right)$
Height \(3.2274654342991159095460600047808594749\)
Torsion structure: \(\Z/3\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-\frac{16}{3} a^{3} + 9 a^{2} + 18 a + 10 : \frac{50}{3} a^{3} - \frac{169}{9} a^{2} - \frac{236}{3} a - \frac{4}{9} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 3.2274654342991159095460600047808594749 \)
Period: \( 28.659471545381856813935013773342846714 \)
Tamagawa product: \( 5 \)
Torsion order: \(3\)
Leading coefficient: \( 2.00481631535149 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^3-a^2-5a)\) \(4\) \(5\) \(I_{5}\) Split multiplicative \(-1\) \(1\) \(5\) \(5\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3B.1.1
\(5\) 5B.4.2

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3, 5, 9, 15 and 45.
Its isogeny class 4.1-a consists of curves linked by isogenies of degrees dividing 45.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.