Properties

Label 4.4.10512.1-37.1-a2
Base field 4.4.10512.1
Conductor norm \( 37 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.10512.1

Generator \(a\), with minimal polynomial \( x^{4} - 7 x^{2} - 6 x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -6, -7, 0, 1]))
 
gp: K = nfinit(Polrev([1, -6, -7, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -6, -7, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(a+1\right){x}{y}+\left(a^{2}-a-4\right){y}={x}^{3}+\left(a^{3}-5a-5\right){x}^{2}+\left(217a^{3}+34a^{2}-1515a-1528\right){x}+3150a^{3}+446a^{2}-21991a-22038\)
sage: E = EllipticCurve([K([1,1,0,0]),K([-5,-5,0,1]),K([-4,-1,1,0]),K([-1528,-1515,34,217]),K([-22038,-21991,446,3150])])
 
gp: E = ellinit([Polrev([1,1,0,0]),Polrev([-5,-5,0,1]),Polrev([-4,-1,1,0]),Polrev([-1528,-1515,34,217]),Polrev([-22038,-21991,446,3150])], K);
 
magma: E := EllipticCurve([K![1,1,0,0],K![-5,-5,0,1],K![-4,-1,1,0],K![-1528,-1515,34,217],K![-22038,-21991,446,3150]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a+3)\) = \((a+3)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 37 \) = \(37\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((2a^3-2a^2-12a-1)\) = \((a+3)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 37 \) = \(37\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{1234239553}{37} a^{3} + \frac{20463157332}{37} a^{2} + \frac{26028147039}{37} a - \frac{1869517127}{37} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(\frac{362}{121} a^{3} - \frac{4}{121} a^{2} - \frac{2671}{121} a - \frac{2329}{121} : -\frac{2440}{1331} a^{3} + \frac{283}{1331} a^{2} + \frac{19785}{1331} a + \frac{17792}{1331} : 1\right)$
Height \(1.2497707420336548583380566100593121332\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(3 a^{3} - \frac{1}{4} a^{2} - \frac{43}{2} a - \frac{77}{4} : -\frac{11}{8} a^{3} - \frac{1}{8} a^{2} + \frac{95}{8} a + \frac{105}{8} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 1.2497707420336548583380566100593121332 \)
Period: \( 80.571256622091386383036520423502520111 \)
Tamagawa product: \( 1 \)
Torsion order: \(2\)
Leading coefficient: \( 3.92850948168808 \)
Analytic order of Ш: \( 4 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a+3)\) \(37\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3 and 6.
Its isogeny class 37.1-a consists of curves linked by isogenies of degrees dividing 6.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.