Properties

Label 4.4.10512.1-36.1-g1
Base field 4.4.10512.1
Conductor norm \( 36 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.10512.1

Generator \(a\), with minimal polynomial \( x^{4} - 7 x^{2} - 6 x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -6, -7, 0, 1]))
 
gp: K = nfinit(Polrev([1, -6, -7, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -6, -7, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{2}-a-4\right){x}{y}+\left(a^{3}-a^{2}-4a-1\right){y}={x}^{3}+a{x}^{2}+\left(-209a^{3}+209a^{2}+1045a-337\right){x}+2739a^{3}-4097a^{2}-16666a+1739\)
sage: E = EllipticCurve([K([-4,-1,1,0]),K([0,1,0,0]),K([-1,-4,-1,1]),K([-337,1045,209,-209]),K([1739,-16666,-4097,2739])])
 
gp: E = ellinit([Polrev([-4,-1,1,0]),Polrev([0,1,0,0]),Polrev([-1,-4,-1,1]),Polrev([-337,1045,209,-209]),Polrev([1739,-16666,-4097,2739])], K);
 
magma: E := EllipticCurve([K![-4,-1,1,0],K![0,1,0,0],K![-1,-4,-1,1],K![-337,1045,209,-209],K![1739,-16666,-4097,2739]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^3-a^2-5a+2)\) = \((a^3-a^2-5a)\cdot(a^3-a^2-5a-1)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 36 \) = \(4\cdot9\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((36a^3-36a^2-180a-144)\) = \((a^3-a^2-5a)^{5}\cdot(a^3-a^2-5a-1)^{5}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 60466176 \) = \(4^{5}\cdot9^{5}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{221644716336740306539}{216} a^{3} - \frac{221644716336740306539}{216} a^{2} - \frac{1108223581683701532695}{216} a + \frac{40563798396921485351}{54} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(\frac{9}{2} a^{3} - 6 a^{2} - \frac{57}{2} a + \frac{1}{4} : 4 a^{3} - \frac{21}{8} a^{2} - \frac{169}{8} a - \frac{17}{4} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 10.624499582777055317596145855508465402 \)
Tamagawa product: \( 25 \)  =  \(5\cdot5\)
Torsion order: \(2\)
Leading coefficient: \( 2.59063254073549 \)
Analytic order of Ш: \( 4 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^3-a^2-5a)\) \(4\) \(5\) \(I_{5}\) Split multiplicative \(-1\) \(1\) \(5\) \(5\)
\((a^3-a^2-5a-1)\) \(9\) \(5\) \(I_{5}\) Split multiplicative \(-1\) \(1\) \(5\) \(5\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(5\) 5B.4.2

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 5 and 10.
Its isogeny class 36.1-g consists of curves linked by isogenies of degrees dividing 10.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.