Properties

Label 4.4.10512.1-36.1-c2
Base field 4.4.10512.1
Conductor norm \( 36 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.10512.1

Generator \(a\), with minimal polynomial \( x^{4} - 7 x^{2} - 6 x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -6, -7, 0, 1]))
 
gp: K = nfinit(Polrev([1, -6, -7, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -6, -7, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{3}-5a-5\right){x}{y}+{y}={x}^{3}+\left(-a^{3}+2a^{2}+3a-3\right){x}^{2}+\left(-14a^{3}-38a^{2}-24a\right){x}-187a^{3}-556a^{2}-351a+64\)
sage: E = EllipticCurve([K([-5,-5,0,1]),K([-3,3,2,-1]),K([1,0,0,0]),K([0,-24,-38,-14]),K([64,-351,-556,-187])])
 
gp: E = ellinit([Polrev([-5,-5,0,1]),Polrev([-3,3,2,-1]),Polrev([1,0,0,0]),Polrev([0,-24,-38,-14]),Polrev([64,-351,-556,-187])], K);
 
magma: E := EllipticCurve([K![-5,-5,0,1],K![-3,3,2,-1],K![1,0,0,0],K![0,-24,-38,-14],K![64,-351,-556,-187]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^3-a^2-5a+2)\) = \((a^3-a^2-5a)\cdot(a^3-a^2-5a-1)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 36 \) = \(4\cdot9\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((6144)\) = \((a^3-a^2-5a)^{22}\cdot(a^3-a^2-5a-1)^{2}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 1424967069597696 \) = \(4^{22}\cdot9^{2}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{805304833}{6144} a^{3} + \frac{805304833}{6144} a^{2} + \frac{4026524165}{6144} a - \frac{535300095}{2048} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(3 a^{3} - a^{2} - 12 a - 5 : 2 a^{3} - 7 a^{2} - 25 a - 16 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 18.195516627338082134402328725057197510 \)
Tamagawa product: \( 4 \)  =  \(2\cdot2\)
Torsion order: \(2\)
Leading coefficient: \( 0.177468678324160 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^3-a^2-5a)\) \(4\) \(2\) \(I_{22}\) Non-split multiplicative \(1\) \(1\) \(22\) \(22\)
\((a^3-a^2-5a-1)\) \(9\) \(2\) \(I_{2}\) Non-split multiplicative \(1\) \(1\) \(2\) \(2\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2.
Its isogeny class 36.1-c consists of curves linked by isogenies of degree 2.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.