Properties

Label 3.3.81.1-8.1-a2
Base field \(\Q(\zeta_{9})^+\)
Conductor norm \( 8 \)
CM no
Base change yes
Q-curve yes
Torsion order \( 3 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\zeta_{9})^+\)

Generator \(a\), with minimal polynomial \( x^{3} - 3 x - 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, -3, 0, 1]))
 
gp: K = nfinit(Polrev([-1, -3, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, -3, 0, 1]);
 

Weierstrass equation

\({y}^2+a{x}{y}+\left(a^{2}-1\right){y}={x}^{3}-{x}^{2}+\left(125040a^{2}-43189a-360486\right){x}+56242078a^{2}-19527401a-161952511\)
sage: E = EllipticCurve([K([0,1,0]),K([-1,0,0]),K([-1,0,1]),K([-360486,-43189,125040]),K([-161952511,-19527401,56242078])])
 
gp: E = ellinit([Polrev([0,1,0]),Polrev([-1,0,0]),Polrev([-1,0,1]),Polrev([-360486,-43189,125040]),Polrev([-161952511,-19527401,56242078])], K);
 
magma: E := EllipticCurve([K![0,1,0],K![-1,0,0],K![-1,0,1],K![-360486,-43189,125040],K![-161952511,-19527401,56242078]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Mordell-Weil group structure

\(\Z/{3}\Z\)

Mordell-Weil generators

$P$$\hat{h}(P)$Order
$\left(-\frac{1219}{3} a^{2} + 125 a + \frac{3601}{3} : \frac{33091}{3} a^{2} - \frac{11812}{3} a - \frac{94685}{3} : 1\right)$$0$$3$

Invariants

Conductor: $\frak{N}$ = \((2)\) = \((2)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: $N(\frak{N})$ = \( 8 \) = \(8\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: $\Delta$ = $-2097152$
Discriminant ideal: $\frak{D}_{\mathrm{min}} = (\Delta)$ = \((-2097152)\) = \((2)^{21}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: $N(\frak{D}_{\mathrm{min}}) = N(\Delta)$ = \( -9223372036854775808 \) = \(-8^{21}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: $j$ = \( -\frac{1159088625}{2097152} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: $\mathrm{End}(E)$ = \(\Z\)   
Geometric endomorphism ring: $\mathrm{End}(E_{\overline{\Q}})$ = \(\Z\)    (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{ST}(E)$ = $\mathrm{SU}(2)$

BSD invariants

Analytic rank: $r_{\mathrm{an}}$= \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: $r$ = \(0\)
Regulator: $\mathrm{Reg}(E/K)$ = \( 1 \)
Néron-Tate Regulator: $\mathrm{Reg}_{\mathrm{NT}}(E/K)$ = \( 1 \)
Global period: $\Omega(E/K)$ \( 1.1276992257415772736525574059704960331 \)
Tamagawa product: $\prod_{\frak{p}}c_{\frak{p}}$= \( 21 \)
Torsion order: $\#E(K)_{\mathrm{tor}}$= \(3\)
Special value: $L^{(r)}(E/K,1)/r!$ \( 0.29236646593300151539140377191827674932 \)
Analytic order of Ш: Ш${}_{\mathrm{an}}$= \( 1 \) (rounded)

BSD formula

$\displaystyle 0.292366466 \approx L(E/K,1) \overset{?}{=} \frac{ \# Ш(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \approx \frac{ 1 \cdot 1.127699 \cdot 1 \cdot 21 } { {3^2 \cdot 9.000000} } \approx 0.292366466$

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 

This elliptic curve is semistable. There is only one prime $\frak{p}$ of bad reduction.

$\mathfrak{p}$ $N(\mathfrak{p})$ Tamagawa number Kodaira symbol Reduction type Root number \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))\)
\((2)\) \(8\) \(21\) \(I_{21}\) Split multiplicative \(-1\) \(1\) \(21\) \(21\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3B.1.1
\(7\) 7B.1.3

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3, 7 and 21.
Its isogeny class 8.1-a consists of curves linked by isogenies of degrees dividing 21.

Base change

This elliptic curve is a \(\Q\)-curve. It is the base change of the following elliptic curve:

Base field Curve
\(\Q\) 162.c2