Learn more

Refine search


Results (4 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
8.1-a1 8.1-a \(\Q(\zeta_{9})^+\) \( 2^{3} \) 0 $\Z/21\Z$ $\mathrm{SU}(2)$ $1$ $386.8008344$ 0.292366465 \( -\frac{140625}{8} \) \( \bigl[a^{2} + a - 1\) , \( -a^{2} + a + 2\) , \( a^{2} - 2\) , \( 13 a^{2} + 2 a - 44\) , \( -22 a^{2} - 3 a + 88\bigr] \) ${y}^2+\left(a^{2}+a-1\right){x}{y}+\left(a^{2}-2\right){y}={x}^{3}+\left(-a^{2}+a+2\right){x}^{2}+\left(13a^{2}+2a-44\right){x}-22a^{2}-3a+88$
8.1-a2 8.1-a \(\Q(\zeta_{9})^+\) \( 2^{3} \) 0 $\Z/3\Z$ $\mathrm{SU}(2)$ $1$ $1.127699225$ 0.292366465 \( -\frac{1159088625}{2097152} \) \( \bigl[a\) , \( -1\) , \( a^{2} - 1\) , \( 125040 a^{2} - 43189 a - 360486\) , \( 56242078 a^{2} - 19527401 a - 161952511\bigr] \) ${y}^2+a{x}{y}+\left(a^{2}-1\right){y}={x}^{3}-{x}^{2}+\left(125040a^{2}-43189a-360486\right){x}+56242078a^{2}-19527401a-161952511$
8.1-a3 8.1-a \(\Q(\zeta_{9})^+\) \( 2^{3} \) 0 $\Z/7\Z$ $\mathrm{SU}(2)$ $1$ $128.9336114$ 0.292366465 \( \frac{3375}{2} \) \( \bigl[1\) , \( a^{2} + a - 3\) , \( a^{2} + a - 1\) , \( -a^{2} + 4\) , \( -a - 2\bigr] \) ${y}^2+{x}{y}+\left(a^{2}+a-1\right){y}={x}^{3}+\left(a^{2}+a-3\right){x}^{2}+\left(-a^{2}+4\right){x}-a-2$
8.1-a4 8.1-a \(\Q(\zeta_{9})^+\) \( 2^{3} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $0.375899741$ 0.292366465 \( -\frac{189613868625}{128} \) \( \bigl[a + 1\) , \( -a\) , \( a^{2} - 1\) , \( 17115 a^{2} - 5866 a - 49431\) , \( 1410206 a^{2} - 489214 a - 4061553\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a^{2}-1\right){y}={x}^{3}-a{x}^{2}+\left(17115a^{2}-5866a-49431\right){x}+1410206a^{2}-489214a-4061553$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.