Properties

Label 3.3.81.1-51.3-a6
Base field \(\Q(\zeta_{9})^+\)
Conductor norm \( 51 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\zeta_{9})^+\)

Generator \(a\), with minimal polynomial \( x^{3} - 3 x - 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, -3, 0, 1]))
 
gp: K = nfinit(Polrev([-1, -3, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, -3, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(a+1\right){x}{y}+\left(a^{2}-2\right){y}={x}^{3}+\left(-a^{2}+a+1\right){x}^{2}+\left(-273a^{2}+412a+168\right){x}-3801a^{2}+3940a+1822\)
sage: E = EllipticCurve([K([1,1,0]),K([1,1,-1]),K([-2,0,1]),K([168,412,-273]),K([1822,3940,-3801])])
 
gp: E = ellinit([Polrev([1,1,0]),Polrev([1,1,-1]),Polrev([-2,0,1]),Polrev([168,412,-273]),Polrev([1822,3940,-3801])], K);
 
magma: E := EllipticCurve([K![1,1,0],K![1,1,-1],K![-2,0,1],K![168,412,-273],K![1822,3940,-3801]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^2-3a-4)\) = \((-a^2+1)\cdot(a^2+a-3)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 51 \) = \(3\cdot17\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((28206a^2-4329a-48420)\) = \((-a^2+1)^{8}\cdot(a^2+a-3)^{8}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -45767944570401 \) = \(-3^{8}\cdot17^{8}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{15897092117456459660800496}{62781816969} a^{2} - \frac{73067274470120883503414977}{188345450907} a - \frac{31128269893684578702277955}{188345450907} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-\frac{5}{4} a^{2} + \frac{21}{2} a + \frac{3}{4} : -\frac{41}{8} a^{2} - \frac{15}{4} a + \frac{5}{4} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 1.4764520048470304683879173308792195063 \)
Tamagawa product: \( 16 \)  =  \(2\cdot2^{3}\)
Torsion order: \(2\)
Leading coefficient: \( 0.65620089104312465261685214705743089170 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a^2+1)\) \(3\) \(2\) \(I_{8}\) Non-split multiplicative \(1\) \(1\) \(8\) \(8\)
\((a^2+a-3)\) \(17\) \(8\) \(I_{8}\) Split multiplicative \(-1\) \(1\) \(8\) \(8\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 4 and 8.
Its isogeny class 51.3-a consists of curves linked by isogenies of degrees dividing 8.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.