Properties

Base field \(\Q(\zeta_{9})^+\)
Label 3.3.81.1-27.1-a2
Conductor \((3,3)\)
Conductor norm \( 27 \)
CM yes (\(-3\))
base-change yes: 27.a3
Q-curve yes
Torsion order \( 3 \)
Rank not available

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

Base field \(\Q(\zeta_{9})^+\)

Generator \(a\), with minimal polynomial \( x^{3} - 3 x - 1 \); class number \(1\).

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, -3, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^3 - 3*x - 1)
 
gp (2.8): K = nfinit(a^3 - 3*a - 1);
 

Weierstrass equation

\( y^2 + \left(a^{2} - 1\right) y = x^{3} + \left(a^{2} + a - 2\right) x^{2} + \left(a + 2\right) x + 12 a^{2} - 4 a - 35 \)
magma: E := ChangeRing(EllipticCurve([0, a^2 + a - 2, a^2 - 1, a + 2, 12*a^2 - 4*a - 35]),K);
 
sage: E = EllipticCurve(K, [0, a^2 + a - 2, a^2 - 1, a + 2, 12*a^2 - 4*a - 35])
 
gp (2.8): E = ellinit([0, a^2 + a - 2, a^2 - 1, a + 2, 12*a^2 - 4*a - 35],K)
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

\(\mathfrak{N} \) = \((3,3)\) = \( \left(-a^{2} + 1\right)^{3} \)
magma: Conductor(E);
 
sage: E.conductor()
 
\(N(\mathfrak{N}) \) = \( 27 \) = \( 3^{3} \)
magma: Norm(Conductor(E));
 
sage: E.conductor().norm()
 
\(\mathfrak{D}\) = \((3,3 a,3 a^{2} - 6)\) = \( \left(-a^{2} + 1\right)^{3} \)
magma: Discriminant(E);
 
sage: E.discriminant()
 
gp (2.8): E.disc
 
\(N(\mathfrak{D})\) = \( 27 \) = \( 3^{3} \)
magma: Norm(Discriminant(E));
 
sage: E.discriminant().norm()
 
gp (2.8): norm(E.disc)
 
\(j\) = \( 0 \)
magma: jInvariant(E);
 
sage: E.j_invariant()
 
gp (2.8): E.j
 
\( \text{End} (E) \) = \(\Z[(1+\sqrt{-3})/2]\)   ( Complex Multiplication )
magma: HasComplexMultiplication(E);
 
sage: E.has_cm(), E.cm_discriminant()
 
\( \text{ST} (E) \) = $N(\mathrm{U}(1))$

Mordell-Weil group

Rank not available.
magma: Rank(E);
 
sage: E.rank()
 
magma: Generators(E); // includes torsion
 
sage: E.gens()
 

Regulator: not available

magma: Regulator(Generators(E));
 
sage: E.regulator_of_points(E.gens())
 

Torsion subgroup

Structure: \(\Z/3\Z\)
magma: TorsionSubgroup(E);
 
sage: E.torsion_subgroup().gens()
 
gp (2.8): elltors(E)[2]
 
magma: Order(TorsionSubgroup(E));
 
sage: E.torsion_order()
 
gp (2.8): elltors(E)[1]
 
Generator: $\left(-2 a^{2} + 6 : 3 a^{2} - a - 10 : 1\right)$
magma: [f(P): P in Generators(T)] where T,f:=TorsionSubgroup(E);
 
sage: E.torsion_subgroup().gens()
 
gp (2.8): elltors(E)[3]
 

Local data at primes of bad reduction

magma: LocalInformation(E);
 
sage: E.local_data()
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\( \left(-a^{2} + 1\right) \) \(3\) \(1\) \(II\) Additive \(-1\) \(3\) \(3\) \(0\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p \) except those listed.

prime Image of Galois Representation
\(3\) 3Cs.1.1

For all other primes \(p\), the image is the normalizer of a split Cartan subgroup if \(\left(\frac{ -3 }{p}\right)=+1\) or the normalizer of a nonsplit Cartan subgroup if \(\left(\frac{ -3 }{p}\right)=-1\).

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3 and 9.
Its isogeny class 27.1-a consists of curves linked by isogenies of degrees dividing 27.

Base change

This curve is the base-change of elliptic curves 27.a3, defined over \(\Q\), so it is also a \(\Q\)-curve.