Properties

Label 3.3.81.1-17.2-a4
Base field \(\Q(\zeta_{9})^+\)
Conductor norm \( 17 \)
CM no
Base change no
Q-curve no
Torsion order \( 6 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\zeta_{9})^+\)

Generator \(a\), with minimal polynomial \( x^{3} - 3 x - 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, -3, 0, 1]))
 
gp: K = nfinit(Polrev([-1, -3, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, -3, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{2}-1\right){x}{y}+\left(a^{2}+a-2\right){y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-7615a^{2}+11768a+4776\right){x}+514961a^{2}-789514a-335090\)
sage: E = EllipticCurve([K([-1,0,1]),K([1,-1,0]),K([-2,1,1]),K([4776,11768,-7615]),K([-335090,-789514,514961])])
 
gp: E = ellinit([Polrev([-1,0,1]),Polrev([1,-1,0]),Polrev([-2,1,1]),Polrev([4776,11768,-7615]),Polrev([-335090,-789514,514961])], K);
 
magma: E := EllipticCurve([K![-1,0,1],K![1,-1,0],K![-2,1,1],K![4776,11768,-7615],K![-335090,-789514,514961]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^2+a-3)\) = \((a^2+a-3)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 17 \) = \(17\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((13a^2-16a-25)\) = \((a^2+a-3)^{3}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 4913 \) = \(17^{3}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{21094639493182324371}{4913} a^{2} - \frac{32318862738926135454}{4913} a - \frac{13768548051921749460}{4913} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/6\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(19 a^{2} - 37 a + 2 : -51 a^{2} + 50 a + 85 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 54.784464282139040589221927251771945649 \)
Tamagawa product: \( 3 \)
Torsion order: \(6\)
Leading coefficient: \( 0.50726355816795407952983265973862912638 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^2+a-3)\) \(17\) \(3\) \(I_{3}\) Split multiplicative \(-1\) \(1\) \(3\) \(3\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B.1.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3, 4, 6 and 12.
Its isogeny class 17.2-a consists of curves linked by isogenies of degrees dividing 12.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.