Properties

Label 3.3.81.1-17.1-a8
Base field \(\Q(\zeta_{9})^+\)
Conductor norm \( 17 \)
CM no
Base change no
Q-curve no
Torsion order \( 6 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\zeta_{9})^+\)

Generator \(a\), with minimal polynomial \( x^{3} - 3 x - 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, -3, 0, 1]))
 
gp: K = nfinit(Polrev([-1, -3, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, -3, 0, 1]);
 

Weierstrass equation

\({y}^2+{x}{y}+\left(a^{2}+a-2\right){y}={x}^{3}+\left(a^{2}-2\right){x}^{2}+\left(-311a^{2}+119a+874\right){x}+1414a^{2}-463a-4127\)
sage: E = EllipticCurve([K([1,0,0]),K([-2,0,1]),K([-2,1,1]),K([874,119,-311]),K([-4127,-463,1414])])
 
gp: E = ellinit([Polrev([1,0,0]),Polrev([-2,0,1]),Polrev([-2,1,1]),Polrev([874,119,-311]),Polrev([-4127,-463,1414])], K);
 
magma: E := EllipticCurve([K![1,0,0],K![-2,0,1],K![-2,1,1],K![874,119,-311],K![-4127,-463,1414]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((2a^2-a-3)\) = \((2a^2-a-3)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 17 \) = \(17\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((43494a^2-62501a-116106)\) = \((2a^2-a-3)^{12}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -582622237229761 \) = \(-17^{12}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{4075073731548124101}{582622237229761} a^{2} - \frac{3433122709460467011}{582622237229761} a - \frac{810676269288190764}{582622237229761} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/6\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-32 a^{2} + 12 a + 90 : -278 a^{2} + 95 a + 802 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 13.696116070534760147305481812942986412 \)
Tamagawa product: \( 12 \)
Torsion order: \(6\)
Leading coefficient: \( 0.50726355816795407952983265973862912638 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((2a^2-a-3)\) \(17\) \(12\) \(I_{12}\) Split multiplicative \(-1\) \(1\) \(12\) \(12\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B.1.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3, 4, 6 and 12.
Its isogeny class 17.1-a consists of curves linked by isogenies of degrees dividing 12.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.