Properties

Base field \(\Q(\zeta_{9})^+\)
Label 3.3.81.1-17.1-a2
Conductor \((17,-2 a^{2} + a + 3)\)
Conductor norm \( 17 \)
CM no
base-change no
Q-curve no
Torsion order \( 2 \)
Rank not available

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

Base field \(\Q(\zeta_{9})^+\)

Generator \(a\), with minimal polynomial \( x^{3} - 3 x - 1 \); class number \(1\).

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, -3, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^3 - 3*x - 1)
 
gp: K = nfinit(a^3 - 3*a - 1);
 

Weierstrass equation

\( y^2 + \left(a^{2} - 2\right) x y = x^{3} + \left(-a^{2} + 3\right) x^{2} + \left(-11 a^{2} - 24 a - 21\right) x - 38 a^{2} - 104 a - 85 \)
magma: E := ChangeRing(EllipticCurve([a^2 - 2, -a^2 + 3, 0, -11*a^2 - 24*a - 21, -38*a^2 - 104*a - 85]),K);
 
sage: E = EllipticCurve(K, [a^2 - 2, -a^2 + 3, 0, -11*a^2 - 24*a - 21, -38*a^2 - 104*a - 85])
 
gp: E = ellinit([a^2 - 2, -a^2 + 3, 0, -11*a^2 - 24*a - 21, -38*a^2 - 104*a - 85],K)
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

\(\mathfrak{N} \) = \((17,-2 a^{2} + a + 3)\) = \( \left(2 a^{2} - a - 3\right) \)
magma: Conductor(E);
 
sage: E.conductor()
 
\(N(\mathfrak{N}) \) = \( 17 \) = \( 17 \)
magma: Norm(Conductor(E));
 
sage: E.conductor().norm()
 
\(\mathfrak{D}\) = \((83521,a + 42558,a^{2} + 53042)\) = \( \left(2 a^{2} - a - 3\right)^{4} \)
magma: Discriminant(E);
 
sage: E.discriminant()
 
gp: E.disc
 
\(N(\mathfrak{D})\) = \( 83521 \) = \( 17^{4} \)
magma: Norm(Discriminant(E));
 
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
\(j\) = \( \frac{261445487080230981}{83521} a^{2} - \frac{400557711948933636}{83521} a - \frac{170646420428250786}{83521} \)
magma: jInvariant(E);
 
sage: E.j_invariant()
 
gp: E.j
 
\( \text{End} (E) \) = \(\Z\)   (no Complex Multiplication )
magma: HasComplexMultiplication(E);
 
sage: E.has_cm(), E.cm_discriminant()
 
\( \text{ST} (E) \) = $\mathrm{SU}(2)$

Mordell-Weil group

Rank not available.

magma: Rank(E);
 
sage: E.rank()
 

Regulator: not available

magma: gens := [P:P in Generators(E)|Order(P) eq 0]; gens;
 
sage: gens = E.gens(); gens
 
magma: Regulator(gens);
 
sage: E.regulator_of_points(gens)
 

Torsion subgroup

Structure: \(\Z/2\Z\)
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
Generator: $\left(-\frac{11}{4} a^{2} - \frac{1}{4} a + 4 : -\frac{5}{8} a^{2} + \frac{3}{2} a + \frac{33}{8} : 1\right)$
magma: [piT(P) : P in Generators(T)];
 
sage: T.gens()
 
gp: T[3]
 

Local data at primes of bad reduction

magma: LocalInformation(E);
 
sage: E.local_data()
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\( \left(2 a^{2} - a - 3\right) \) \(17\) \(4\) \(I_{4}\) Split multiplicative \(-1\) \(1\) \(4\) \(4\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B.1.2

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3, 4, 6 and 12.
Its isogeny class 17.1-a consists of curves linked by isogenies of degrees dividing 12.

Base change

This curve is not the base-change of an elliptic curve defined over \(\Q\). It is not a \(\Q\)-curve.