Properties

Base field 3.3.733.1
Label 3.3.733.1-7.1-b4
Conductor \((7,-a^{2} - 2 a + 3)\)
Conductor norm \( 7 \)
CM no
base-change no
Q-curve no
Torsion order \( 4 \)
Rank \( 0 \)

Related objects

Downloads

Learn more about

Show commands for: Magma / Pari/GP / SageMath

Base field 3.3.733.1

Generator \(a\), with minimal polynomial \( x^{3} - x^{2} - 7 x + 8 \); class number \(1\).

sage: x = polygen(QQ); K.<a> = NumberField(x^3 - x^2 - 7*x + 8)
 
gp: K = nfinit(a^3 - a^2 - 7*a + 8);
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![8, -7, -1, 1]);
 

Weierstrass equation

\(y^2+xy+\left(a^{2}+a-5\right)y=x^{3}+\left(a^{2}-a-5\right)x^{2}+\left(274158a^{2}+416226a-870957\right)x+116637957a^{2}+177079592a-370544096\)
sage: E = EllipticCurve(K, [1, a^2 - a - 5, a^2 + a - 5, 274158*a^2 + 416226*a - 870957, 116637957*a^2 + 177079592*a - 370544096])
 
gp: E = ellinit([1, a^2 - a - 5, a^2 + a - 5, 274158*a^2 + 416226*a - 870957, 116637957*a^2 + 177079592*a - 370544096],K)
 
magma: E := ChangeRing(EllipticCurve([1, a^2 - a - 5, a^2 + a - 5, 274158*a^2 + 416226*a - 870957, 116637957*a^2 + 177079592*a - 370544096]),K);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

\(\mathfrak{N} \) = \((7,-a^{2} - 2 a + 3)\) = \( \left(a^{2} + 2 a - 3\right) \)
sage: E.conductor()
 
magma: Conductor(E);
 
\(N(\mathfrak{N}) \) = \( 7 \) = \( 7 \)
sage: E.conductor().norm()
 
magma: Norm(Conductor(E));
 
\(\mathfrak{D}\) = \((5764801,a + 2864081,a^{2} + 195578)\) = \( \left(a^{2} + 2 a - 3\right)^{8} \)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
\(N(\mathfrak{D})\) = \( 5764801 \) = \( 7^{8} \)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
\(j\) = \( \frac{1824928468}{5764801} a^{2} - \frac{1345230953}{5764801} a - \frac{2105854007}{5764801} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
\( \text{End} (E) \) = \(\Z\)   (no Complex Multiplication )
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
\( \text{ST} (E) \) = $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \( 0 \)

sage: E.rank()
 
magma: Rank(E);
 

Regulator: 1

sage: gens = E.gens(); gens
 
magma: gens := [P:P in Generators(E)|Order(P) eq 0]; gens;
 
sage: E.regulator_of_points(gens)
 
magma: Regulator(gens);
 

Torsion subgroup

Structure: \(\Z/4\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Generator: $\left(164 a^{2} + 250 a - 520 : 9555 a^{2} + 14506 a - 30355 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\( \left(a^{2} + 2 a - 3\right) \) \(7\) \(8\) \(I_{8}\) Split multiplicative \(-1\) \(1\) \(8\) \(8\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 4 and 8.
Its isogeny class 7.1-b consists of curves linked by isogenies of degrees dividing 8.

Base change

This curve is not the base-change of an elliptic curve defined over \(\Q\). It is not a \(\Q\)-curve.