Properties

Label 3.3.733.1-64.4-f1
Base field 3.3.733.1
Conductor norm \( 64 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 3.3.733.1

Generator \(a\), with minimal polynomial \( x^{3} - x^{2} - 7 x + 8 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([8, -7, -1, 1]))
 
gp: K = nfinit(Polrev([8, -7, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![8, -7, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{2}-4\right){x}{y}+\left(a^{2}+a-4\right){y}={x}^{3}+\left(-a^{2}-a+6\right){x}^{2}+\left(8a^{2}-38a+40\right){x}+46a^{2}-177a+148\)
sage: E = EllipticCurve([K([-4,0,1]),K([6,-1,-1]),K([-4,1,1]),K([40,-38,8]),K([148,-177,46])])
 
gp: E = ellinit([Polrev([-4,0,1]),Polrev([6,-1,-1]),Polrev([-4,1,1]),Polrev([40,-38,8]),Polrev([148,-177,46])], K);
 
magma: E := EllipticCurve([K![-4,0,1],K![6,-1,-1],K![-4,1,1],K![40,-38,8],K![148,-177,46]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-a^2+a+8)\) = \((a^2-6)^{6}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 64 \) = \(2^{6}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((21a^2+30a-80)\) = \((a^2-6)^{14}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -16384 \) = \(-2^{14}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -12237 a^{2} - 1963 a + 84888 \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(a - 2 : -2 a + 2 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 100.08089192440531714854496619751120897 \)
Tamagawa product: \( 4 \)
Torsion order: \(2\)
Leading coefficient: \( 3.6965720871657879485870149912204321621 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^2-6)\) \(2\) \(4\) \(I_{4}^{*}\) Additive \(-1\) \(6\) \(14\) \(0\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2.
Its isogeny class 64.4-f consists of curves linked by isogenies of degree 2.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.