Properties

Base field 3.3.733.1
Label 3.3.733.1-2.1-c1
Conductor \((2,-a + 2)\)
Conductor norm \( 2 \)
CM no
base-change no
Q-curve no
Torsion order \( 4 \)
Rank not available

Related objects

Downloads

Learn more about

Show commands for: Magma / Pari/GP / SageMath

Base field 3.3.733.1

Generator \(a\), with minimal polynomial \( x^{3} - x^{2} - 7 x + 8 \); class number \(1\).

sage: x = polygen(QQ); K.<a> = NumberField(x^3 - x^2 - 7*x + 8)
 
gp: K = nfinit(a^3 - a^2 - 7*a + 8);
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![8, -7, -1, 1]);
 

Weierstrass equation

\( y^2 + \left(a^{2} - 5\right) x y + y = x^{3} + \left(-a + 1\right) x^{2} + \left(-1022218105 a^{2} - 1551930198 a + 3247458136\right) x + 33252622286582 a^{2} + 50484087904678 a - 105639391507833 \)
sage: E = EllipticCurve(K, [a^2 - 5, -a + 1, 1, -1022218105*a^2 - 1551930198*a + 3247458136, 33252622286582*a^2 + 50484087904678*a - 105639391507833])
 
gp: E = ellinit([a^2 - 5, -a + 1, 1, -1022218105*a^2 - 1551930198*a + 3247458136, 33252622286582*a^2 + 50484087904678*a - 105639391507833],K)
 
magma: E := ChangeRing(EllipticCurve([a^2 - 5, -a + 1, 1, -1022218105*a^2 - 1551930198*a + 3247458136, 33252622286582*a^2 + 50484087904678*a - 105639391507833]),K);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

\(\mathfrak{N} \) = \((2,-a + 2)\) = \( \left(a^{2} - 6\right) \)
sage: E.conductor()
 
magma: Conductor(E);
 
\(N(\mathfrak{N}) \) = \( 2 \) = \( 2 \)
sage: E.conductor().norm()
 
magma: Norm(Conductor(E));
 
\(\mathfrak{D}\) = \((4,a,a^{2} - 4)\) = \( \left(a^{2} - 6\right)^{2} \)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
\(N(\mathfrak{D})\) = \( 4 \) = \( 2^{2} \)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
\(j\) = \( \frac{38239925}{4} a^{2} + \frac{58077475}{4} a - \frac{121417863}{4} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
\( \text{End} (E) \) = \(\Z\)   (no Complex Multiplication )
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
\( \text{ST} (E) \) = $\mathrm{SU}(2)$

Mordell-Weil group

Rank not available.

sage: E.rank()
 
magma: Rank(E);
 

Regulator: not available

sage: gens = E.gens(); gens
 
magma: gens := [P:P in Generators(E)|Order(P) eq 0]; gens;
 
sage: E.regulator_of_points(gens)
 
magma: Regulator(gens);
 

Torsion subgroup

Structure: \(\Z/2\Z\times\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Generators: $\left(\frac{28015}{4} a^{2} + \frac{42533}{4} a - \frac{89005}{4} : -\frac{37573}{8} a^{2} - \frac{57051}{8} a + \frac{119355}{8} : 1\right)$,$\left(\frac{27851}{4} a^{2} + 10571 a - 22121 : -\frac{37353}{8} a^{2} - \frac{56717}{8} a + 14832 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\( \left(a^{2} - 6\right) \) \(2\) \(2\) \(I_{2}\) Split multiplicative \(-1\) \(1\) \(2\) \(2\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2Cs

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2 and 4.
Its isogeny class 2.1-c consists of curves linked by isogenies of degrees dividing 8.

Base change

This curve is not the base-change of an elliptic curve defined over \(\Q\). It is not a \(\Q\)-curve.