Properties

Label 3.3.733.1-2.1-b4
Base field 3.3.733.1
Conductor norm \( 2 \)
CM no
Base change no
Q-curve no
Torsion order \( 6 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 3.3.733.1

Generator \(a\), with minimal polynomial \( x^{3} - x^{2} - 7 x + 8 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([8, -7, -1, 1]))
 
gp: K = nfinit(Polrev([8, -7, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![8, -7, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{2}-5\right){x}{y}={x}^{3}+\left(-a^{2}+5\right){x}^{2}+\left(-11a^{2}+29a-3\right){x}+37a^{2}-146a+133\)
sage: E = EllipticCurve([K([-5,0,1]),K([5,0,-1]),K([0,0,0]),K([-3,29,-11]),K([133,-146,37])])
 
gp: E = ellinit([Polrev([-5,0,1]),Polrev([5,0,-1]),Polrev([0,0,0]),Polrev([-3,29,-11]),Polrev([133,-146,37])], K);
 
magma: E := EllipticCurve([K![-5,0,1],K![5,0,-1],K![0,0,0],K![-3,29,-11],K![133,-146,37]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^2-6)\) = \((a^2-6)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 2 \) = \(2\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-a^2-8a)\) = \((a^2-6)^{12}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 4096 \) = \(2^{12}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{2615577}{4096} a^{2} - \frac{11083745}{4096} a + \frac{12352857}{4096} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-\frac{1}{2} a^{2} - \frac{7}{4} a + 8 : \frac{13}{8} a^{2} + \frac{17}{8} a - 16 : 1\right)$
Height \(1.1008579324817441694229838748377948570\)
Torsion structure: \(\Z/6\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(a - 2 : 2 a^{2} - 8 a + 7 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 1.1008579324817441694229838748377948570 \)
Period: \( 125.94591391463178512125553717886865961 \)
Tamagawa product: \( 2 \)
Torsion order: \(6\)
Leading coefficient: \( 0.85351689191865735834263246428729022860 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^2-6)\) \(2\) \(2\) \(I_{12}\) Non-split multiplicative \(1\) \(1\) \(12\) \(12\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B.1.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3 and 6.
Its isogeny class 2.1-b consists of curves linked by isogenies of degrees dividing 6.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.