Properties

Label 3.3.733.1-175.2-c5
Base field 3.3.733.1
Conductor norm \( 175 \)
CM no
Base change no
Q-curve no
Torsion order \( 4 \)
Rank \( 2 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 3.3.733.1

Generator \(a\), with minimal polynomial \( x^{3} - x^{2} - 7 x + 8 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([8, -7, -1, 1]))
 
gp: K = nfinit(Polrev([8, -7, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![8, -7, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a+1\right){x}{y}+\left(a^{2}+a-4\right){y}={x}^{3}+\left(a^{2}+a-4\right){x}^{2}+\left(-21a^{2}+22a-5\right){x}-30a^{2}-338a+452\)
sage: E = EllipticCurve([K([1,1,0]),K([-4,1,1]),K([-4,1,1]),K([-5,22,-21]),K([452,-338,-30])])
 
gp: E = ellinit([Polrev([1,1,0]),Polrev([-4,1,1]),Polrev([-4,1,1]),Polrev([-5,22,-21]),Polrev([452,-338,-30])], K);
 
magma: E := EllipticCurve([K![1,1,0],K![-4,1,1],K![-4,1,1],K![-5,22,-21],K![452,-338,-30]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-2a^2-2a+19)\) = \((-a+3)^{2}\cdot(a^2+2a-3)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 175 \) = \(5^{2}\cdot7\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((25a^2+54a-7)\) = \((-a+3)^{6}\cdot(a^2+2a-3)^{2}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 765625 \) = \(5^{6}\cdot7^{2}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{2353024794450}{49} a^{2} - \frac{434940018425}{49} a + \frac{16016561377497}{49} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(2\)
Generators $\left(-\frac{109}{25} a^{2} - \frac{96}{25} a + \frac{744}{25} : \frac{2722}{125} a^{2} + \frac{549}{125} a - 138 : 1\right)$ $\left(\frac{53}{4} a^{2} + \frac{73}{4} a - 38 : -\frac{1229}{8} a^{2} - \frac{1895}{8} a + 491 : 1\right)$
Heights \(3.7781342436710927801707368668132025885\) \(1.0387287516048832963970216570836413859\)
Torsion structure: \(\Z/2\Z\oplus\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generators: $\left(5 a - 4 : -3 a^{2} - a + 4 : 1\right)$ $\left(-3 a : a^{2} + a + 2 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 2 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(2\)
Regulator: \( 0.29783268066656565891552334045505652696 \)
Period: \( 72.401813751051594104680379014145386748 \)
Tamagawa product: \( 8 \)  =  \(2^{2}\cdot2\)
Torsion order: \(4\)
Leading coefficient: \( 3.5841181921351919282727124687104657817 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a+3)\) \(5\) \(4\) \(I_0^{*}\) Additive \(1\) \(2\) \(6\) \(0\)
\((a^2+2a-3)\) \(7\) \(2\) \(I_{2}\) Split multiplicative \(-1\) \(1\) \(2\) \(2\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2Cs

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2 and 4.
Its isogeny class 175.2-c consists of curves linked by isogenies of degrees dividing 8.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.