Properties

Label 3.3.733.1-112.3-d4
Base field 3.3.733.1
Conductor norm \( 112 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 3.3.733.1

Generator \(a\), with minimal polynomial \( x^{3} - x^{2} - 7 x + 8 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([8, -7, -1, 1]))
 
gp: K = nfinit(Polrev([8, -7, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![8, -7, -1, 1]);
 

Weierstrass equation

\({y}^2+a{x}{y}+\left(a^{2}-4\right){y}={x}^{3}+\left(a^{2}-5\right){x}^{2}+\left(318a^{2}+457a-1072\right){x}-167802a^{2}-254825a+532900\)
sage: E = EllipticCurve([K([0,1,0]),K([-5,0,1]),K([-4,0,1]),K([-1072,457,318]),K([532900,-254825,-167802])])
 
gp: E = ellinit([Polrev([0,1,0]),Polrev([-5,0,1]),Polrev([-4,0,1]),Polrev([-1072,457,318]),Polrev([532900,-254825,-167802])], K);
 
magma: E := EllipticCurve([K![0,1,0],K![-5,0,1],K![-4,0,1],K![-1072,457,318],K![532900,-254825,-167802]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((2a^2+a-8)\) = \((a^2-6)^{4}\cdot(a^2+2a-3)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 112 \) = \(2^{4}\cdot7\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((3a^2-33a+56)\) = \((a^2-6)^{12}\cdot(a^2+2a-3)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 28672 \) = \(2^{12}\cdot7\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{84096891433574753384471}{7} a^{2} - \frac{14985568201611275023622}{7} a + \frac{571022332294137577763767}{7} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(\frac{59}{4} a^{2} + 22 a - 51 : -\frac{151}{8} a^{2} - \frac{209}{8} a + 61 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 2.4225278868645121633986458178528243444 \)
Tamagawa product: \( 4 \)  =  \(2^{2}\cdot1\)
Torsion order: \(2\)
Leading coefficient: \( 1.4316497456842242889377677216853317400 \)
Analytic order of Ш: \( 16 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^2-6)\) \(2\) \(4\) \(I_{4}^{*}\) Additive \(-1\) \(4\) \(12\) \(0\)
\((a^2+2a-3)\) \(7\) \(1\) \(I_{1}\) Non-split multiplicative \(1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 4 and 8.
Its isogeny class 112.3-d consists of curves linked by isogenies of degrees dividing 8.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.