Properties

Label 3.3.49.1-97.3-a2
Base field \(\Q(\zeta_{7})^+\)
Conductor norm \( 97 \)
CM no
Base change no
Q-curve no
Torsion order \( 4 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\zeta_{7})^+\)

Generator \(a\), with minimal polynomial \( x^{3} - x^{2} - 2 x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -2, -1, 1]))
 
gp: K = nfinit(Polrev([1, -2, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -2, -1, 1]);
 

Weierstrass equation

\({y}^2+a{x}{y}+\left(a^{2}+a-1\right){y}={x}^{3}+\left(a^{2}+a-1\right){x}^{2}+\left(36a^{2}-19a-86\right){x}+131a^{2}-78a-297\)
sage: E = EllipticCurve([K([0,1,0]),K([-1,1,1]),K([-1,1,1]),K([-86,-19,36]),K([-297,-78,131])])
 
gp: E = ellinit([Polrev([0,1,0]),Polrev([-1,1,1]),Polrev([-1,1,1]),Polrev([-86,-19,36]),Polrev([-297,-78,131])], K);
 
magma: E := EllipticCurve([K![0,1,0],K![-1,1,1],K![-1,1,1],K![-86,-19,36],K![-297,-78,131]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^2-4a-2)\) = \((a^2-4a-2)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 97 \) = \(97\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((157a^2+217a-589)\) = \((a^2-4a-2)^{4}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 88529281 \) = \(97^{4}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{7235307964831559815}{88529281} a^{2} + \frac{4015292960676897540}{88529281} a + \frac{16257589635261885424}{88529281} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\oplus\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generators: $\left(3 a^{2} - 2 a - 5 : -a^{2} - a + 2 : 1\right)$ $\left(\frac{3}{4} a^{2} - a - 5 : -\frac{3}{8} a^{2} + \frac{5}{4} a + \frac{7}{8} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 18.771763514582874835157172974119629020 \)
Tamagawa product: \( 4 \)
Torsion order: \(4\)
Leading coefficient: \( 0.67042012552081695839847046336141532215 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^2-4a-2)\) \(97\) \(4\) \(I_{4}\) Split multiplicative \(-1\) \(1\) \(4\) \(4\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2Cs

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2 and 4.
Its isogeny class 97.3-a consists of curves linked by isogenies of degrees dividing 8.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.